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ABSTRACT

Sound design involves creatively selecting, recording, and editing
sound effects for various media like cinema, video games, and vir-
tual/augmented reality. One of the most time-consuming steps when
designing sound is synchronizing audio with video. In some cases,
environmental recordings from video shoots are available, which can
aid in the process. However, in video games and animations, no ref-
erence audio exists, requiring manual annotation of event timings
from the video. We propose a system to extract repetitive actions
onsets from a video, which are then used - in conjunction with au-
dio or textual embeddings - to condition a diffusion model trained
to generate a new synchronized sound effects audio track. In this
way, we leave complete creative control to the sound designer while
removing the burden of synchronization with video. Furthermore,
editing the onset track or changing the conditioning embedding re-
quires much less effort than editing the audio track itself, simplifying
the sonification process. We provide sound examples, source code,
and pretrained models to faciliate reproducibility1.

Index Terms— Sound effects synthesis, foley, diffusion models,
audio-video synchronization, multimodal audio synthesis.

1. INTRODUCTION

Sound plays an essential part in the narration of any audiovisual
work. Consequently, it should come as no surprise that the role of the
Foley artist - who creates sound effects for films, video games, com-
mercials, etc. - is crucial to achieving top-quality productions. This
task presents considerable difficulties, as it is necessary to create an
audio track that corresponds perfectly both in time and content to the
video to be soundtracked. In contexts like video games and animated
movies, sound designers often receive silent videos, requiring them
to create soundtracks entirely from scratch without timing guidance.
In other cases, like cinematographic filming, a raw audio track may
accompany the video, but Foley artists can only rely on it for timing,
while sounds have to be recreated from the ground up; often adopt-
ing totally different materials to those present in the video in order
to seek a hyper-realism that can benefit the narration. In any case,
the essence of the work lies in sourcing and creating high-quality
sounds, leading them to build distinctive sound libraries used across
their productions.

While the creative aspect is highly stimulating, sound designers
dedicate the majority of their time to meticulous, repetitive tasks,
such as precise synchronization of sound events with video mo-
ments, crucial for maintaining viewer immersion.

∗ equal contribution
1https://mcomunita.github.io/diffusion-sfx page
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Fig. 1: The overall architecture consists of two distinct parts: 1) an
Onset Model that, given a silent video extracts the onsets for the ac-
tions in that video; and 2) a Diffusion Model which, conditioned on
the onsets track and a CLAP embedding, generates a synchronized
audio that can be used as soundtrack for the input video

Many works have tried to automate audio-video synchronization:
[1] propose a transformer-based architecture that allows the anal-
ysis of long video sequences; similar solutions have been adopted
in [2], while in [3] the analysis is extended to lip synchronization for
singing voices. In [4] the aim is to generate a musical soundtrack
that is synchronized with the movie pictures.

In sound design, the target is to create an ambient soundtrack that
perfectly describes the scene in terms of general mood of the audio-
visual work, while following the scenes’ transitions as well as tem-
poral and spatial localization. Spatio-temporal event localization is
a key computer vision task, that many research studies have tried to
solve through the use of deep learning techniques. However, works
often focused on detecting and counting the number of repetitions of
a particular action in a video [5, 6].

In [7] the repetition count is class agnostic, which is a case of
major interest for the analysis of movie sequences, video games, and
so forth. However, these works do not provide a precise timing of
the actions, which is crucial information for soundtracking.

In recent years, video-to-audio tasks have started gathering wider
attention and some works analyzed the generation of audio tracks
that are temporally and thematically aligned to a given video se-
quence [8,9]. Contrastive learning is providing remarkable results in
domain translation from video to audio for solving this challenging
problem [10, 11]. The authors of [12] proposed a model to generate
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Fig. 2: Example showing ground truth audio and video, detected onsets and generated audio.

a soundtrack for a silent input video, given a reference audio-video
pair that specifies what the video should sound like.

Compared to previous work, conditioning the audio generation
model with onsets of the actions to be soundtracked can provide Fo-
ley artists with greater creative control, allowing them to bypass the
mechanical task of manually annotating each repetition of the rel-
evant action and focus exclusively on the quality of the sounds to
be produced. Furthermore, modifying an onsets track is very simple
and can be of great help when editing. Therefore, we decided to base
our work on a model that is able to perform onset detection of the
actions present in a silent input video

Next, we developed a diffusion model that, conditioned on an
embedding of the sound representing how the actions in the video
should sound like and an onsets track depicting when those actions
occur over time, generates an audio track that is in time and con-
tent aligned with the input video. This choice is motivated by the
extraordinary results that diffusion models have recently achieved in
audio generation [13, 14]. A block diagram of the proposed system
is shown in Figure 1.

2. METHOD

In this section we detail the different components of the proposed
model. The video onset network to detect the occurrences of the rel-
evant actions in the silent input video. The audio representation net-
work to obtain an embedding of the desired target sound from audio
or textual source. Finally, the diffusion model which, conditioned on
onset track and sound embedding, generates the onset-synchronized
audio track.

2.1. Video Onset Detection
Inspired by the work done in [12], we selected a ResNet(2+1)D-18 as
the video onset detection network. Following their implementation,
we removed all temporal striding so that the last convolutional layer
would have the same temporal sampling rate as the input video and
therefore preserve more detailed temporal information.

At the final stage, after pooling, a fully connected layer outputs a
label of the same length in frames as the input video. Each element
of this label is a prediction representing the presence or absence of a
given action at the specific frame. Consequently the resulting label
will be a binary mask in which the value 1 for the i-th element repre-
sents the presence of an onset for frame i, while the value 0 indicates
the fact that no action has been detected for that frame. Therefore,
given a silent input video V ∈ RC×H×W×T , where C is the num-
ber of input channels, H ×W is the dimension in height and width
of each frame and T is the total duration of the video expressed in

frames, the video onset model outputs an onset label o ∈ RT where
each element oi is defined as:

oi =

{
1, if there is an action in the i-th frame
0, if there is no action in the i-th frame

2.2. Audio Representation
In recent years there has been a substantial effort to develop general-
purpose audio representations that generalize well to a variety of
downstream tasks [15], with contrastive learning becoming a widely
adopted training regime [16], especially in the case of multimodal
approaches. A successful example of multimodal representation
learning is CLAP [17], where embeddings for the audio and text
modalities are aligned in the latent space. We leverage such align-
ment conditioning our synthesis model on audio embeddings only at
training time, allowing textual queries as a secondary conditioning
modality at inference time.

2.3. Sound Effects Synthesis
We generate a time-domain sound effects sequence x(0) by em-
ploying a variance-preserving continuous-time diffusion model Sθ

[18, 19], capturing the gradient of the noisy log-distribution:

∇x(t) log p(x(t)) ≈ Sθ(x(t), σ(t)),

where p(x(t)) =
∫
x(0)

p(x(t) | x(0))p(x(0)), with:

p(x(t) | x(0)) = N (x(t) | α(t)x(0), σ2(t)I)

a Gaussian perturbation kernel. Following [19], we use a noise
schedule σ(t) ∈ [0, 1] and α(t) = cos(0.5πσ(t)). Sθ is trained
by minimizing the following loss:

Eσ(t)∼[0,1],x(t)

[
∥Sθ(x(t), σ(t))− v(t)∥22

]
,

where x(t) = α(t)x(0) + β(t)ϵ, v(t) = α(t)ϵ − β(t)x(0) , with
β(t) = sin(0.5πσ(t)) and ϵ white noise. For sampling, we use a
standard DDIM integrator [20]. The architecture and conditioning
strategies follow the design of Moûsai [21]. The encoder/decoder
structure of the residual UNet Sθ has 8 layers and a total down-
sampling/upsampling factor of 1024. The innermost 4 layers per-
form self-attention - with 8 attention heads and 64 features - to share
time-wise information. At each layer, cross-attention is used to con-
dition with external CLAP embeddings. The diffusion model is also
fed with the onsets through a convolutional encoder that follows the
structure of the UNet encoder and injects the channels at the cor-
responding layer inside the UNet. We then train the model with
classifier-free guidance [22].
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3. EXPERIMENTAL DESIGN

3.1. Dataset

To train and test our models we adopt the widely-used Greatest Hits
dataset [23]. This dataset includes videos of humans using a drum-
stick to hit or rub objects or surfaces. The choice of a drumstick as
the striking object is useful, as it minimally occludes each frame,
enabling the video onset detection network to better comprehend
the scene. Each video in the dataset captures the drumstick action,
and the audio is recorded with a shotgun microphone attached to the
camera, followed by denoising. The dataset contains onset annota-
tions for each video, along with action and material labels for most
events. This comprehensive dataset is fundamental for our model
since it is the only one of sufficient size and quality, providing the
audio-visual information our model relies on.

Altogether, the dataset consists of 977 videos captured both out-
door and indoor. Indoor scenes contain a variety of hard and soft ma-
terials, such as metal, plastic, cloth, while the outdoor scenes contain
materials that scatter and deform, such as grass, leaves and water. On
average, each video contains 48 actions, divided between hitting and
scratching. This ensures that each extracted chunk of video, last-
ing either 2s (for the onset model) or 6s (for the synthesis model),
contains a sufficient number of hits.

We divided the dataset into 683 videos for the training set, 98 for
the validation set and 196 for the test set (70/10/20%).

3.2. Experiments
We split the problem of video-to-audio synthesis into a video anal-
ysis stage and a sound synthesis stage. In order to establish which
of these stages is the limiting factor on the overall performance, we
organize training and evaluation in three main parts for video onset
detection stage, sound effects synthesis stage, and complete system.
Evaluation of the complete system is conducted on pre-trained mod-
els, i.e., we do not attempt end-to-end training of both models.

As objective metrics - similar to previous work [12] - we measure
the accuracy on the number of detected/synthesized onsets and the
average precision score2, which measures the synchronization be-
tween models’ outputs and ground truth. To further evaluate how
well the synthesized audio approximates the training data we use
the Fréchet Audio Distance (FAD) [24] which, correlating with hu-
man judgment, is also a measure of perceived quality of individual
sounds.
Video Onset Detection — to assess the performance of the on-
set detection model we rely on ground truth annotations. Since the
dataset includes - on average - an event every 1.5 s, we train the
model on 2s long video chunks. Furthermore, to train more effi-
ciently, we downsample the videos to a 15fps frame rate. To con-
struct the input, we extract the single frames as image files, and feed
the network groups of 30 consecutive frames. Overall, each batch
has size [B, T,C,H,W ], with B batch size, T frames, C color
channels, H and W height and width of each frame.

We repeat the same experiment twice comparing the performance
when using augmentations [25] on the input frames. Without aug-
mentations the frames are simply resized to a 112-by-112 dimension
to match the model requirements, and are channel normalized with
mean and standard deviation computed across the dataset for each
color channel. When using augmentations, we first resize to 128-
by-128 and apply random crop to the final size; we also apply color
jitter before normalization. Augmentations are only applied to train-
ing and validation sets.

2https://scikit-learn.org/

We train each model for 100 epochs on a binary cross-entropy loss
with batch size of 16, using AdamW optimizer with weight decay of
1 ·10−3 and a learning rate of 1 ·10−4. To generate the output binary
labels we use a sigmoid on the network output and apply a threshold
of 0.5. We compute accuracy and average precision score at 15fps.
Sound Effects Synthesis — to train the diffusion model we use
audio batches - extracted from the videos - of shape [B,C,L], with
B batch size, C audio channels, and L length in samples. The model
trains on windows of 218 samples at 48kHz (∼6s). Ground truth
onset annotations are used to build binary tensors at audio rate for
conditioning. We also zero out the audio track before the first onset
to remove possible tails from previous events. Finally, a conditioning
segment is extracted by randomly choosing an onset and slicing until
the following one. Such slice is embedded with CLAP and the result
is fed to the UNet via cross-attention. For classifier-free guidance,
during training, we use a constant embedding with 0.1 probability,
and for inference, we use an embedding scale of 2.

The model is trained with the AdamW optimizer with a batch size
of 2 for 1000 epochs with weight decay 1 · 10−3 and a learning rate
of 1 · 10−4.

To evaluate our model, we create 2-second clips using the initial
ground truth onsets from the test set videos. We exclude tracks with
zero onsets, leaving us with 160 segments. To account for any po-
tential initial onset misses in the manual annotations of the Greatest
Hits dataset, we reset the beginning of both the generated and ground
truth tracks until the first annotated event.

Differently from the onset model, in this case we compute the
objective metrics at audio sample rate, using a confidence interval of
50ms. Furthermore, we compute the FAD for both audio and text
modalities using the labels available in the dataset as text queries.
Complete System — performance of the complete system is mea-
sured by first generating the binary labels with the pre-trained onset
networks and converting them into onset tracks at audio sample rate
to condition the synthesis model. Onsets are then extracted from the
ground truth and synthesized audio using librosa 3, and a tolerance
of ±50ms is applied to compute the onset synchronization precision.
Although we have ground truth annotations, we adopt this approach
for a fair comparison with the baseline described below, which does
not use annotations. We generate 160 chunks like in the previous
scenario.

Even if librosa’s onset detection tool has mainly been used for the
peak detection of musical audio segments, here the direct application
of this feature is justified by the fact that ground truth and generated
audio tracks contain minimal if any background noise, allowing for
a correct onsets extraction without further processing steps.

An example of the proposed model’s output is shown in Fig. 2.
Baseline — we compare our approach with a recent work [12]
where a model is proposed to sonify a silent video using a condi-
tioning audio-visual pair. CondFoleyGen uses SpecVQGAN [26] to
learn a codebook from the training data spectrograms. During train-
ing, the code for the conditioning audio is passed as input - along
with the embeddings for the conditioning and silent videos - to a
transformer, which autoregressively predicts the codes that should
represent the target sound. Then, a MelGAN vocoder [27] produces
the waveform generated from the spectrogram reconstructed by the
codebook decoder. Finally, an audio-visual synchronization model
is used to re-rank many generated soundtracks and choose the one
with the best temporal alignment.

Since no pre-trained models were available at the moment of writ-
ing, we re-trained the model using the code provided in the official

3https://librosa.org/doc/0.10.0/index.html
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Table 1: Onset detection model evaluation

Params. Loss # Onset Onset Sync.
BCE Acc. (%) ↑ AP (%) ↑

w/out augm. 31M 3.79 43.07 87.71
w/ augm. 31M 2.64 49.39 88.83

repository4 and following details from the paper. Accordingly, we
trained the SpecVQGAN codebook for 400 epochs and the trans-
former for 40 epochs in order to make a fair comparison with our
model.

4. RESULTS

Video Onset Detection — Table 1 shows the results for the on-
set detection model in the two cases. As a fairly simple architec-
ture, not specifically designed for the task at hand, the overall results
are satisfying, with augmentation improving both accuracy and av-
erage precision. In either cases, the model seems to be well suited
to condition our synthesis model. We noticed that the network tends
to overestimate the number of detected events, which becomes the
main limitation in terms of reliability for the overall system.
Sound Effects Synthesis — Table 2 reports the evaluation for the
diffusion model. Accuracy and average precision are computed be-
tween conditioning onset tracks and generated output, with a toler-
ance of ±50ms. FAD is computed between conditioning and synthe-
sized audio. Metrics are measured for both audio and text modalities,
to measure the impact of training with audio modality only. Exam-
ples of conditioning text are available on the project webpage.

The model learns very well to synchronize generated audio with
the onsets. This supports the idea of separating video analysis and
audio synthesis tasks; knowing that, upon development of better
video understanding models, a more precise conditioning could be
given for synthesis in terms of both timing and target sound.

The FAD for the two modalities is very similar, highlighting the
alignment in the embedding space.
Complete System — results for the complete model are shown in
Table 3. Comparing with Table 2, we notice how the onset detection
model is the limiting factor in terms of accuracy and synchroniza-
tion. In this case, augmentations have a negative impact, but the
objective metrics remain in line with Table 1.

With respect to the baseline, the strong conditioning induced by
the onsets track results in higher performance with almost half the
number of parameters.

The increase in onset accuracy with respect to the onset model
alone might be explained by the tendency of the onset model to
overestimate the number of onsets. When detected from the audio,
nearby false positives in the conditioning onset track might be “ob-
scured” by preceding ones, leading to a few percentage point im-
provement.

The proposed system is also surpassing the baseline - although by
a limited margin - in terms of audio quality when measured with the
FAD. Again, with respect to the diffusion model alone, we observe
also a degradation in the FAD. This can be explained by the fact that
in the complete system, we do not zero out the generated and test
tracks like with the standalone diffusion model, resulting in a lower
correlation between ground truth and generated tracks.

4https://github.com/XYPB/CondFoleyGen/tree/main

Table 2: Synthesis diffusion model evaluation

Modality Params. # Onset Onset Sync. FAD ↓
Acc. (%) ↑ AP (%) ↑

Audio 215M 89.38 98.75 1.48
Text 215M 84.38 98.12 1.68

Table 3: Complete model (SyncFusion) evaluation

Model Params. # Onset Onset Sync. FAD ↓
Acc. (%) ↑ AP (%) ↑

Ours (w/out augm.) 246M 56.87 84.37 5.50
Ours (w/ augm.) 246M 49.38 79.11 5.38
CondFoleyGen 408M 23.94 62.44 6.10

5. DISCUSSION

Video-to-audio tasks are garnering researchers’ attention, thanks to
the rapid advancement of both vision and audio generation architec-
tures. Even if sound effects and environmental sounds are crucial for
the task, these applications are lagging behind speech and music syn-
thesis, especially in professional sound design, where high-quality
audio libraries and annotations are vital. In fact, no datasets specific
for Foley generation tasks are available, with Greatest Hits [23] be-
ing the only exception. This choice allowed us to compare with the
selected baseline; although, the use of such a specific dataset - with
not totally realistic scenes - is a limitation of our work.

6. CONCLUSION AND FUTURE WORK

In this paper we propose a model for the sonification of silent videos
by generating an audio track that is temporally and semantically
aligned with the target video. Our model is divided in two parts:
a video onset network, with which onsets of actions present in an
input silent video can be extracted; and a diffusion model that, con-
ditioned on an onset track and a latent representation of the desired
sound allows to generate a matching audio track that is synchronized
to the onsets.

In future work, we plan to create a new dataset with audio-video
pairs and onset annotations for scenes of interest in Foley generation.
We’ll extract these scenes from films and video games to test the
model in realistic settings. Additionally, we aim to explore novel
approaches for training the onset model with minimal annotations,
avoiding the need for manual annotation of every action in the video.
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