
SPECMASKGIT: MASKED GENERATIVE MODELING OF AUDIO
SPECTROGRAMS FOR EFFICIENT AUDIO SYNTHESIS AND BEYOND

Marco Comunità∗1,2 Zhi Zhong∗2 Akira Takahashi2 Shiqi Yang2 Mengjie Zhao2

Koichi Saito3 Yukara Ikemiya4 Takashi Shibuya4 Shusuke Takahashi2 Yuki Mitsufuji2,3
1 Queen Mary University of London, UK 2 Sony Group Corporation, Japan

3 Sony AI, US 4 Sony AI, Japan

ABSTRACT

Recent advances in generative models that iteratively syn-
thesize audio clips sparked great success to text-to-audio
synthesis (TTA), but with the cost of slow synthesis speed
and heavy computation. Although there have been at-
tempts to accelerate the iterative procedure, high-quality
TTA systems remain inefficient due to hundreds of iter-
ations required in the inference phase and large amount
of model parameters. To address the challenges, we pro-
pose SpecMaskGIT, a light-weighted, efficient yet effec-
tive TTA model based on the masked generative modeling
of spectrograms. First, SpecMaskGIT synthesizes a real-
istic 10 s audio clip by less than 16 iterations, an order-of-
magnitude less than previous iterative TTA methods. As
a discrete model, SpecMaskGIT outperforms larger VQ-
Diffusion and auto-regressive models in the TTA bench-
mark, while being real-time with only 4 CPU cores or even
30× faster with a GPU. Next, built upon a latent space of
Mel-spectrogram, SpecMaskGIT has a wider range of ap-
plications (e.g., the zero-shot bandwidth extension) than
similar methods built on the latent wave domain. More-
over, we interpret SpecMaskGIT as a generative exten-
sion to previous discriminative audio masked Transform-
ers, and shed light on its audio representation learning
potential. We hope our work inspires the exploration of
masked audio modeling toward further diverse scenarios.

1. INTRODUCTION

Text-to-audio synthesis (TTA) allows users to synthesize
realistic audio and sound event signals by natural language
prompts. TTA can assist the sound design and editing in
the music, movie, and game industries, accelerating cre-
ators’ workflow [1]. Therefore, TTA has earned arising
attention in the research community.

Recent advances in deep generative models, espe-
cially iterative methods such as diffusion [2–5] and auto-
regressive models [6–8], have brought significant success
to the sound quality and controllability in TTA tasks, but
with the cost of slow synthesis speed. Since the synthesis
speed of iterative methods is dominated by the number of
iterations required at inference, techniques have been intro-
duced to to reduce iterations, e.g., higher compression rate

*Equal contribution. Marco Comunità was an intern at Sony.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

500 550
Number of Iterations

F
A

D

OURS

Params: 170M

FAD: 2.7

DiffSound

Params: 400M

FAD: 7.8

Make-An-Audio

Params: 330M

FAD: 4.6

AudioLDM-Medium-Full-FT

Params: 420M

FAD: 2.6

Make-An-Audio-2

Params: 940M

FAD: 1.8

Tango

Params: 870M

FAD: 1.6

MAGNeT-Small

Params: 300M

FAD: 3.2

AudioLDM-Large-Full-FT

Params: 740M

FAD: 2.0

AudioLDM-2-Large-AC

Params: 710M

FAD: 1.4

AudioGen-Base

Params: 285M

FAD: 3.1

AudioGen-Large

Params: 1500M

FAD: 1.8

Figure 1. Audio synthesis performance and number of
synthesis iterations of different methods. The size of circle
represents the model size. SpecMaskGIT achieves decent
quality with only 16 iterations and a small model size.

1 2 4 8 16 32

0.5

1

1.5

2

2.5

3

CPU cores

R
e
a
l-
t
im

e
 f

a
c
t
o
r

Real TimeReal Time

Figure 2. Real-time factor of SpecMaskGIT on different
Xeon CPU cores with standard Python implementation.

of raw audio signals [6] or more efficient diffusion sam-
plers [4, 9]. Nevertheless, these iterative methods remain
slow in synthesis speed and demanding for computing re-
sources, as they typically require hundreds of iterations to
synthesize a short audio clip. Moreover, the runtime of a
single iteration increases due to the huge model size.

To further improve the efficiency of audio synthesis,
Garcia et al. introduced the MaskGIT [10] synthesis strat-
egy from computer vision to the realm of audio and pro-
posed VampNet [11]. Although VampNet can inpaint a
10-second clip with 24 iterations, 6 seconds are needed on
GPU [11], which is still heavy for non-GPU environments.
Moreover, VampNet is not compatible with text prompts or
TTA tasks. Concurrent to our work, MAGNeT extended
VampNet to text-conditional audio synthesis [12]. How-
ever, the method is less efficient as it requires 180 itera-
tions, which is even heavier than some diffusion models
that only requires 100 iterations [4, 9, 13, 14]. Since both
VampNet and MAGNeT work in a wave-domain latent
space, it is difficult to conduct frequency-domain inpaint-
ing tasks such as bandwidth extension (BWE) in a zero-
shot manner. Besides the aforementioned limitations, the

ar
X

iv
:2

40
6.

17
67

2v
2

 [
cs

.S
D

]
 2

6
Ju

n
20

24

audio representation learning potential of a masked gener-
ative Transformer has not been investigated yet.

As a summary, an audio synthesis method that is com-
patible with text prompts, highly efficient in synthesis
speed, and flexible for various downstream tasks is yet to
be explored. To this end, we propose SpecMaskGIT, an ef-
ficient and flexible TTA model based on the masked gener-
ative modeling of audio spectrograms, to address the above
challenges. Our contributions lie in the following aspects.
• Efficient and effective TTA. SpecMaskGIT synthesizes

a realistic 10-second audio clip by less than 16 iter-
ations, which is one order-of-magnitude smaller than
previous iterative methods shown in Fig. 1. As a
discrete generative model, SpecMaskGIT outperforms
larger VQ-Diffusion (DiffSound [2]) and auto-regressive
(AudioGen-base [6]) models in a TTA benchmark, while
being real-time with 4 CPU cores shown in Fig. 2 or even
30× faster on a GPU.

• Flexibility in downstream tasks. SpecMaskGIT is in-
terpreted and implemented as a generative extension
to previous discriminative audio masked Transformers
[15–18]. The masked spectrogram modeling principle
and architecture design similar to audio MAE [16–18] is
believed to have contributed to the representation learn-
ing potential of SpecMaskGIT. Unlike prior arts about
finetuning MAE-like architectures for BWE [18, 19],
SpecMaskGIT enabled BWE in a zero-shot manner.

We hope this efficient, effective and flexible framework
pave the way to the exploration of masked audio model-
ing toward further diverse scenarios [20]. 1

2. RELATED WORKS
Synthesizing audio signals in raw waveform is challeng-
ing and computationally demanding [21]. Therefore, the
mainstream approach to audio synthesis is to first generate
audio in a compressed latent space, and then restore wave-
forms from latent representations. Auto-regressive mod-
els such as Jukebox [22], AudioGen [6] and MusicGen
[23] use vector-quantized (VQ) variational auto-encoders
(VAE) [24] to tokenize raw waveforms into a discrete la-
tent space. While AudioGen and MusicGen use a higher
compression rate than Jukebox, 500 iterations are required
to synthesize a 10-second clip, slowing down the speed.

Advances in audio representation learning such as audio
MAE ([16–18]) indicate that Mel-spectrogram is an ef-
fective compression of raw audio signals, as it emphasizes
acoustic features of sound events while maintaining suf-
ficient details to reconstruct raw waveforms. Inspired by
the above success of representation learning, several meth-
ods used discrete [2] or continuous [3,4,9,13,14] diffusion
models upon the latent Mel-spectrogram space created by
a VAE or SpecVQGAN [25]. These diffusion models re-
quire up to 200 iterations for high-fidelity synthesis, which
is still challenging for low-resource platforms and inter-
active use cases. While distilling a diffusion model can
effectively reduce the required iterations [26], we limit our

1 Demo: https://zzaudio.github.io/SpecMaskGIT/
index.html

VQGAN
DEC

VQGAN
ENC

Loss

Figure 3. SpecVQGAN, which encodes non-overlapping
16-by-16 time-mel patches into discrete tokens, and de-
codes the discrete tokens back to Mel-spectrogram.

discussion to non-distilled methods for a fair comparison.
For Mel-based synthesis methods, waveforms are recon-
structed from Mel-spectrogram with a neural vocoder, such
as HiFiGAN [27] or BigVSAN [28].

In pursuit of higher synthesis efficiency, VampNet [11]
and the concurrent MAGNeT [12] introduced the parallel
iterative synthesis strategy from MaskGIT [10]. MaskGIT,
originally proposed for class-conditional image synthesis
tasks in [10], uses a bi-directional Transformer, instead
of the uni-directional counterpart in auto-regressive meth-
ods, to reduce the required number of iterations. Although
VampNet and MAGNeT reduced the number of iterations
compared to their auto-regressive counterparts, VampNet
does not support text prompts, while MAGNeT takes 180
iterations, which is even heavier than some diffusion mod-
els that only require 100 iterations [4,9,13,14]. Moreover,
it is difficult for methods built upon wave-domain latent
space to address frequency domain tasks such as BWE,
limiting their applications.

3. SPECMASKGIT
The efficiency, effectiveness and flexbility of Spec-
MaskGIT is the consequence of a combination of efforts,
including the high compression rate in the tokenizer, the
small model size, fast synthesis algorithm, among others.

3.1 Spectrogram Tokenizer and Vocoder
A modified SpecVQGAN [25] is trained to tokenize non-
overlapping 16-by-16 time-mel patches into discrete to-
kens, and recover the tokens back to Mel-spectrogram
as in Fig. 3. Reconstructed Mel-spectrograms are then
transformed to waveforms by a pre-trained vocoder. On
top of the 3.2× compression offered by the wave-to-mel
transform in our configuration, SpecVQGAN further offers
256× compression of the spectrogram, resulting in total
over 800× compression to the raw waveform, effectively
reducing the number of tokens to synthesize.

We utilize the standard Mel transform widely used in
vocoders [27–30] for optimal Mel computation, as hyper-
parameters of Mel transform has an impact on tokenizer’s
performance [9]. To stabilize the training, we keep the
spectrogram normalization in the original SpecVQGAN,
which clips Mel bins lower than -80 dB or louder than 20
dB, and then maps the spectrogram into the range between
-1.0 to 1.0. Our modified SpecVQGAN is shown competi-
tive in reconstruction quality in Sec. 5.1.

3.2 Masked Generative Modeling of Spectrograms
We train a masked generative Transformer upon the dis-
crete latent space created by the pretrained SpecVQGAN
as in Fig. 4. First, the pretrained CLAP encoder maps the

https://zzaudio.github.io/SpecMaskGIT/index.html
https://zzaudio.github.io/SpecMaskGIT/index.html

TRANSFORMER
CLAP C

Masking

Loss

M

Learned
Mask

Conditioning
Mask

VQGAN
ENC

M/C M/C M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

Figure 4. Self-supervised training of SpecMaskGIT. The
Transformer is trained to reconstruct SpecVQGAN token
sequences that are randomly masked with variable mask-
ing ratios, conditioned by a semantic embeddding from
the CLAP encoder. “M” denotes the learned mask token,
while “C” denotes the proposed conditional mask.

input audio to a semantic embedding aligned with its corre-
sponding text descriptions. Meanwhile, the input audio is
tokenized by SpecVQGAN. Finally, similar to representa-
tion learning such as audio MAE [16–18], a bi-directional
Transformer is trained to reconstruct Mel-spectrogram to-
ken sequences from a randomly masked input.

There are two major differences from audio MAE. First,
the masking ratio is NOT a fixed value but sampled on-the-
fly from a truncated Gaussian distribution that is centered
at 55% [31] and ranges from 0% to 100% [10]. As a re-
sult, although in each training step SpecMaskGIT behaves
similarly to audio MAE, it learns the training data distribu-
tion from various masking ratios, hence gaining the ability
to iteratively refine audio tokens by gradually decreasing
the masking ratio across multiple iterations, which is ex-
plained in Sec. 3.4. The other difference lies in the loss
function. Audio MAE works on raw Mel-spectrograms,
thus the mask reconstruction is optimized by mean square
error. However, SpecMaskGIT works in a discrete latent
space, which means the reconstruction of a masked posi-
tion evolves to the retrieval of a correct code from the code-
book of SpecVQGAN, i.e., a multi-class single-label clas-
sification procedure. Therefore, the loss function becomes
the cross entropy (CE) loss with label smoothing equal to
0.1. Following audio MAE, those visible positions in the
input are not considered in the loss calculation:

Loss = CE(prediction[mask], label[mask]). (1)

3.3 Text Conditioning via Sequential Modeling

Similarly to [4], we train SpecMaskGIT without audio-text
pairs by using a pretrained CLAP model [32], for which
audio and text embeddings are aligned in a shared latent
space. Leveraging such alignment, after training with the
audio branch of CLAP in Fig. 4, we can directly condi-
tion our pretrained model with the text branch as in Fig. 5.
We use a publicly available CLAP checkpoint (“630k-
audioset-best.pt” [32]) for better reproducibility.

Although the above design is inspired by AudioLDM
[4], SpecMaskGIT is different in the way to inject CLAP
conditions. Besides the FiLM mechanism ([33]) used in
AudioLDM, prior arts inject text conditions into the gener-
ative model via the cross-attention mechanism [2, 3, 9, 13,
14], even for methods based on sequential modeling such

as AudioGen [6] and MAGNeT [12], which inevitably in-
volves efforts to modify basic DNN modules. We believe
that reusing identical DNN modules, such as the Vision
Transformer (ViT) [34], across different tasks is benefi-
cial to efficient development, so we choose to achieve text-
conditional audio synthesis by pure sequential modeling,
i.e., appending the CLAP embedding to the input sequence
of the Transformer. As a result, SpecMaskGIT can be im-
plemented by the same ViT used in audio MAE [16–18],
and thus we interpret SpecMaskGIT as a generative exten-
sion to previous discriminative ways of masked spectro-
gram modeling. We hypothesize the masked spectrogram
modeling and ViT implementation similar to audio MAE
has contributed to the representation learning potential of
SpecMaskGIT, as is shown in Sec. 5.2,

While the common practice in [10, 16–18] is to use a
learnable but input-independent token to indicate which
parts in the sequence are masked (“M” in Fig. 4), the mask
reconstruction task is challenging as the input-independent
mask offers no hint for a better reconstruction. To further
guide the mask reconstruction procedure, we propose to di-
rectly use the input-dependent CLAP embedding as a con-
ditional mask (“C” in Fig. 4), which offers semantic hints
like “a dog barking sound” to the model, and is found ben-
eficial to TTA performance in Sec. 5.1.

3.4 Iterative Synthesis with Classifier-free Guidance

We follow the parallel iterative synthesis strategy pro-
posed in MaskGIT [10] in general, but employ classifier-
free guidance (CFG) [35] to improve the synthesis qual-
ity. This iterative algorithm allows SpecMaskGIT to syn-
thesize multiple high-quality tokens at each iteration, re-
ducing the number of iterations to a value one order-of-
magnitude smaller than previous TTA methods.

To enable CFG, we replace CLAP embedding with the
learned mask token on a random 10% of training steps. At
inference phase, both the conditional logit ℓc and uncondi-
tional logit ℓu for each masked token are computed. The
final logits ℓg are made by a linear combination of the two
logits based on t, the guidance scale:

ℓg = ℓu + t(ℓc − ℓu). (2)

Intuitively, CFG balances between diversity and audio-text
alignment. Inspired by [36], we introduce a linear sched-
uler to the guidance scale t, which linearly increases t from
0.0 to an assigned value through the synthesis iterations.
This allows the result of early iterations to be more diverse
(unconditional) with low guidance, but increases the in-
fluence of the conditioning for the later synthesis, and is
proved beneficial to synthesis quality in Sec. 5.1.

The parallel iterative synthesis of SpecMaskGIT shown
in Fig. 5 is explained as follows.
1. Estimating. The Transformer estimates the probability
of being the correct code at each masked position for all
discrete codes in the SpecVQGAN codebook.
2. Unmasking. Given the probabilities over the codebook
for each masked position, a code is retrieved based on the

Parallel Iterative Synthesis

TRANSFORMER
A dog barks and a bell rings

Audio

Text

CLAP
VQGAN
DEC

Top-k Sampling

M

Learned
Mask

C
Conditioning

Mask

M/C

M/C M/C M/C M/C M/C M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C M/C

M/C M/C

M/C M/C

Figure 5. The iterative text-to-audio synthesis in SpecMaskGIT.

VQGAN
ENC

Time Masking
or Inpainting

Freq. Masking or
Super-resolution

Parallel Iterative
Synthesis

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C M/C M/C M/C M/C M/C

Figure 6. Zero-shot time inpainting and bandwidth extension for general audio data via SpecMaskGIT.

categorical sampling to unmask that position. This step is
different from the deterministic unmasking in audio MAE.
3. Scheduling. Although SpecMaskGIT can unmask all
positions at once, the quality of the synthesized audio is
low. To iteratively refine the synthesis, we need to re-mask
the result to a masking ratio that is lower than the current
iteration. We follow the common practice in [10–12,31] to
use a cosine scheduler to decide the masking ratio in each
iteration. The cosine scheduler re-masks a larger portion
of the synthesized audio for the early iterations, which is
intuitive as the quality in earlier iterations is lower.
4. Top-k sampling. Given the masking ratio for the next
iteration, we get to know k tokens are going to be re-
masked. The log-likelihood of unmasked tokens is used to
decide the k worst tokens. Since it is observed that a deter-
ministic top-k retrieval leads to the synthesis of monotonic
images in [37], we followed [11,31] to add a Gumbel noise
to log-likelihood, making the top-k sampling stochastic:

confidence = log(p) + tgumbel · ngumbel, (3)

where p is the probabilities of all unmasked tokens cal-
culated from the CFG logits in Eq. 2, ngumbel is Gumbel
noise, and tgumbel is the temperature multiplied to Gumbel
noise. Following [31], we linearly anneal the tgumbel by
a coefficient defined as iter/num_iter, where “iter” means
the index of the current iteration, “num_iter” stands for the
number of all scheduled iterations.
5. Repeating. Repeat the above operations until the cosine
scheduler reduces the masking ratio to 0.

For TTA, the SpecMaskGIT starts the above iterative
procedure from a fully masked sequence as in Fig. 5.
Meanwhile, the iterative algorithm is also valid when the
masking ratio of input sequence is lower than 100%, which
automatically enables zero-shot inpainting in both time
and frequency domain as is shown in Fig. 6. It is worth
noticing that since VampNet [11] and MAGNeT [12] em-
ploy a wave-domain tokenizer, explicit frequency inpaint-
ing (BWE) is difficult.

4. EXPERIMENTS

We pretrained the SpecVQGAN [25] and two vocoders
(HiFiGAN [27] & BigVSAN [30]) on AudioSet (AS) un-
balanced and balanced subset [38] for 1.5M steps. The AS
we collected contains around 1.8 million 10-second audio

segments of diverse sound sources and recording environ-
ments. AS has been widely used in general audio repre-
sentation learning [16–18]. We followed the “VGGSound”
configuration in the original SpecVQGAN repository [25]
without using LPAPS loss as suggested in the reposi-
tory. Our SpecVQGAN has around 75M parameters, and a
codebook of 1024 codes, each of which is represented by
a 256-dim embedding. As mentioned in Sec. 3.1, the stan-
dard Mel-spectrogram transform from vocoders [27, 28] is
utilized, which transforms a 10-second audio clip at sam-
pling rate 22.05kHz into 848 frames with 80 Mel bins. The
Mel-spectrogram is further tokenized into 265 tokens.

SpecMaskGIT employs the ViT implementation widely
used in previous audio masked Transformers [15, 16, 18,
39]. To be consistent with the image MaskGIT [10], 24
Transformer blocks are used, in which the attention dimen-
sion is 768 with 8 heads and the feedforward dimension is
3072, resulting in around 170M parameters. We trained
SpecMaskGIT on AS for 500k steps with a batch size of
112. When training the model on AudioCaps (AC) [40],
we train for 250k steps with a batch size of 48, as AC only
contains 50k 10-second audio clips. To stably train Spec-
MaskGIT, we follow the common practice in [16–18] to
employ a linear warmup and then a cosine annealing of
the learning rate (LR). We warmup 16k steps for AS and
5k steps for AC. The base LR is set to 1e-3, and the LR
equates to the division of base LR by batch size [17, 31].
The iterative synthesis algorithm is based on the open-
source implementation of [31].

To evaluate the text-to-audio synthesis quality of Spec-
MaskGIT, we benchmark on the AudioCaps (AC) test set
with the text prompts released by [4] for fair comparison.
To investigate the flexibility of SpecMaskGIT in down-
stream tasks, we use the SpecMaskGIT trained on AS for
500k steps in the following tasks: Zero-shot time inpaint-
ing. we manually mask out the 25th to 35th Mel-spec
frames (around 1.9s) of AC test set, and employ the Spec-
MaskGIT to inpaint the lost regions in a zero-shot manner,
i.e., inpainting without any task-specific finetuning. Zero-
shot audio bandwidth extension: The top 16 Mel-spec
bins (i.e., components beyond 4.3kHz) of AC test set are
masked, which creates a 2.5× BWE task. For all tasks
above, we use the toolbox in [41] to compute FAD ([42])
scores as the metric, since FAD has been widely used to
evaluate TTA [4, 9, 13, 14], time inpainting [4] and BWE

Table 1. Comparing SpecMaskGIT with other discrete
TTA methods on AudioCaps test set.

Method Params Text Num_iter FAD

Diffsound [2] 400M Yes 100 7.8
MAGNeT-small [12] 300M Yes 180 3.2
AudioGen-base [6] 285M Yes 500 3.1
AudioGen-large [6] 1.5B Yes 500 1.8
SpecMaskGIT (ours)

170M No 16

2.7
- w HiFiGAN 2.8

- w/o conditional mask 3.2
- w/o CFG 3.1
- w/o CFG linear scheduler 3.1

[43] tasks. To investigate the representation learning po-
tential of SpecMaskGIT, we further linear probe the model
for the music tagging task in MagnaTagATune (MTAT)
dataset [44] with ROC-AUC and mAP as metrics [45].
MTAT presents a multi-label task for genre, instrument and
mood, thus has been widely used to evaluate music tagging
models [45–48]. We use a single linear layer with batch
normalization and 0.1 dropout as the probe.

5. RESULTS

5.1 Text-to-audio Synthesis
We report the FAD scores of SpecMaskGIT in Tab. 1
together with other discrete models. Our model is first
trained on AS for 500k steps and then finetuned on AC
train set for 250k steps. The CFG scale is set to 3.0
empirically. SpecMaskGIT outperforms Diffsound (VQ-
Diffusion), MAGNeT-small (similar to SpecMaskGIT but
in latent wave domain), as well as AudioGen-base (auto-
regressive) in terms of FAD with one order-of-magnitude
fewer iterations. The FAD score is achieved without train-
ing with any audio-text pairs, which proved the effective-
ness of such self-supervised training for discrete models.
We also found the proposed conditional mask explained in
Sec. 3.3 improves the FAD score without additional param-
eter or computation. Both the CFG and linear scheduler of
CFG scale contributed to the FAD.

Given the small number of iterations and small model
size, SpecMaskGIT can synthesize realistic 10-second au-
dio clips in real-time with only 4 cores of a Xeon CPU as
is shown in Fig. 2, or even 30× faster than real-time on
one RTX-A6000 GPU. The efficiency and effectiveness of
SpecMaskGIT make the model attractive to interactive ap-
plications and low-resource environments.

When compared to state-of-the-art (SOTA) continu-
ous diffusion models in Tab. 2, SpecMaskGIT could not
achieve a comparable FAD score, but we emphasize that
the proposed method offers decent performance with high
efficiency, i.e., smaller model size and fewer iterations,
which can be clearly seen in Fig. 1. Overall, continu-
ous methods are more advantageous in FAD than discrete
methods. We leave the further improvement of discrete
generative model as future work.
Ablation study: Gumbel noise and number of iterations
in SpecMaskGIT. We use HiFiGAN in all ablation stud-
ies. As mentioned in Sec. 3.4, the Gumbel noise is es-
sential to the top-k sampling during the iterative synthesis.
Fig. 7 shows that a temperature of 1.5 is the optimal. Spec-

Table 2. Benchmarking on AudioCaps test set. Dis.: dis-
crete methods. Con.: continuous methods.

Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8
Make-an-Audio [3] 330M ! 100 4.6

MAGNeT-small [12] 300M ! 180 3.2
AudioGen-base [6] 285M ! 500 3.1

AudioLDM-Medium-full-FT [4] 420M ! 100 2.6
AudioLDM-Large-full-FT [4] 740M ! 200 2.0

Make-an-Audio 2 [9] 940M ! 100 1.8
AudioGen-large [6] 1.5B ! 500 1.8

AudioLDM2-Small-AC [14] 350M ! 200 1.7
TANGO-AC [13] 870M ! 100 1.6

AudioLDM2-Large-AC [14] 710M ! 200 1.4
SpecMaskGIT (ours) 170M ! 16 2.7

MaskGIT achieves decent performance (FAD = 3.4) with
only 8 iterations, and reaches its best (FAD = 2.8) with
16 iterations. More iterations do not improve the perfor-
mance, which is consistent with the image MaskGIT [10].

4.2

2.8
2.9

3.2

3.4

3.6

3.8

0 1.5 3 4.5 6 7.5 9
2.5

3

3.5

4

4.5

Gumbel Temperature

F
A

D

8.8

6.7

3.8
3.4

32.9 2.8
3.1 2.9 2.8

8.8

6.7

3.8
3.4

32.9 2.8
3.1 2.9 2.8

0 2 6 10 16 20 36 50

3

4

5

6

7

8

9

10

Number of Iterations

F
A

D

Figure 7. Left: FAD vs. Gumbel temperature. Right: FAD
vs. Number of iterations.

Ablation study: Audio reconstruction quality. We
evaluate the reconstruction FAD (rFAD) scores of two
vocoders and the SpecVQGAN in Tab. 5 with previous
methods reported in [9]. Even with a similar architecture,
rFAD of DiffSound and SpecMaskGIT can vary a lot due
to different Mel computation and vocoder. Our pipeline
achieves SOTA level rFAD scores for Mel-spectrogram
methods while maintaining the highest compression rate
or the lowest latent rate, which helped SpecMaskGIT to
outperform methods such as Diffsound and Make-an-audio
by a large margin yet with higher efficiency. We further
analyze the rFAD of vocoders by inputting ground truth
Mel to them, and found a significant performance gap be-
tween HiFiGAN and BigVSAN, which is not observed
when vocoders are combined with SpecVQGAN. This in-
dicates that SpecVQGAN has been the bottleneck in re-
construction quality and asks for future improvements.

Table 3. rFAD of Mel-spectrogram VAEs and Vocoders on
AudioCaps test set. Bold: best overall rFAD.

Method Mel-spec VAE Vocoder Latent rate rFAD

Diffsound [2] SpecVQGAN MelGAN 27Hz 6.2
Make-an-audio [3] VAE-GAN HiFiGAN 78Hz 6.0

AudioLDM [4] VAE-GAN HiFiGAN 410Hz 1.2
Make-an-audio 2 [9] VAE-GAN BigVGAN 31Hz 1.0

SpecMaskGIT (ours)

-
HiFiGAN 27Hz

0.4
SpecVQGAN 1.1

-
BigVSAN 27Hz

0.1
SpecVQGAN 1.0

Ablation study: Bias in AudioCaps benchmark. The
dataset gap between AC and other larger & more diverse
datasets is investigated. It is observed in [4] that finetun-
ing (FT) a TTA model on AC improves the TTA perfor-

Table 4. AudioCaps test set performance before and after
AudioCaps finetuning (FT).

Method Params Num_iter
FAD

before FT after FT

AudioLDM-Small-full [4] 180M 200 4.9 2.3
AudioLDM-Large-full [4] 740M 200 4.2 2.0

SpecMaskGIT (ours) 170M 16 4.2 2.8

Table 5. Small-scale AudioCaps training results in better
scores than large-scale dataset.

Method Params Num_iter
FAD

Other datasets AudioCaps

AudioLDM-Small [4] 180M 200 4.9 2.4
AudioLDM-Large [4] 740M 200 4.2 2.1

AudioLDM2-Small [14] 350M 200 2.1 1.7
AudioLDM2-Large [14] 710M 200 1.9 1.4

SpecMaskGIT (ours) 170M 16 4.2 2.9

mance in terms of FAD, though the model is pretrained
on a larger dataset. We reproduced this phenomenon with
SpecMaskGIT as shown in Tab. 4. We also observed that
training on the small-scale AC alone brought better FAD
score than the model trained with larger datasets in Tab. 5,
which is consistent with [13, 14].

We hypothesize that there is a data distribution gap be-
tween AC and other datasets, such that when a model fully
fits other datasets, the distribution of its synthesis deviates
from AC, resulting in worse FAD. Therefore, we continued
to train SpecMaskGIT on AS until 800k steps, and depict
the “FAD vs. training step” curves on both the valid and
test set of AC to verify our hypothesis. It is clear in Fig. 8
that SpecMaskGIT learns to synthesize audio in the early
stage and keeps improving the FAD on AC. As the training
goes on, SpecMaskGIT just fits toward AS, which worsens
the FAD in AC.

100 200 300 400 500 600 700 800
2

3

4

5

6

7

8
Val
Test

Steps (k)

FA
D

Learn to
Generate

Learn to fit to AudioSet
and deviate from AudioCaps

Figure 8. FAD vs. AudioSet training steps.

Inspired by audio classification tasks in which early stop
is applied to prevent the model from overfitting to the train
set distribution, we proposed to apply early stop to the
SpecMaskGIT model trained solely on AS, and report the
competitive FAD score with other methods that are without
AC finetuning of AC-alone training in Tab. 6. We believe
that a more comprehensive and less biased benchmark will
contribute to the future advances of TTA research.

5.2 Downstream Inpainting, BWE and Tagging Tasks

Results of the time inpainting and audio BWE tasks are
shown in Tab. 7. We utilized the pipeline in Fig. 6 uncon-
ditionally, with Gumbel temperature 1.5 and 16 iterations.
SpecMaskGIT significantly improved the input signals in
terms of FAD, validating its zero-shot ability in such tasks.
BWE performance can be further improved by applying
the low-frequency replacement (LFR) technique [49, 50].

Table 6. Benchmarking on AudioCaps test set without AC
finetuning or AC-alone training.

Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8
AudioLDM-Small-full [4] 180M ! 200 4.9

Make-an-Audio [3] 330M ! 100 4.6
AudioLDM-Large-full [4] 740M ! 200 4.2

MAGNeT-small [12] 300M ! 180 3.2
AudioGen-base [6] 285M ! 500 3.1

AudioLDM2-Small-full [14] 350M ! 200 2.1
AudioLDM2-Large-full [14] 710M ! 200 1.9

Make-an-Audio 2 [9] 940M ! 100 1.8
AudioGen-large [6] 1.5B ! 500 1.8

SpecMaskGIT-AS-EarlyStop (ours) 170M ! 16 2.9

Table 7. Zero-shot time inpainting and BWE FAD scores.
BWE Time inpaint

Unprocessed 2.7 1.6
SpecMaskGIT (ours) 1.5 1.2
- w/ LFR 0.4 -
Ground truth 0.0 0.0

Unlike prior arts that finetune MAE-like architectures for
BWE [18, 19], SpecMaskGIT achieves it by zero-shot.

In Tab. 8, the potential of SpecMaskGIT in represen-
tation learning is confirmed by the music tagging per-
formance on MTAT dataset. As a TTA model, Spec-
MaskGIT outperforms classification-specialized models
such as CLMR, MusiCNN, MULE, and MERT (the MAE-
like model in wave domain). SpecMaskGIT got an ROC-
AUC comparable to Jukebox which contains 5B parame-
ters. We hypothesize the tagging capability comes from
the masked spectrogram modeling and ViT implementa-
tion similar to audio MAE, as explained in Sec. 3.

Table 8. Music tagging performance on MTAT.
Method

CLMR MusiCNN MERT- MULE- Jukebox SpecMask-
[46] [47] 330M [45] contrastive [48] [22, 51] GIT

mAP (%) 36.1 38.3 40.2 40.4 41.4 40.5
ROC-AUC (%) 89.4 90.6 91.3 91.4 91.5 91.5

We leave the in-depth investigation of SpecMaskGIT in
downstream tasks as future work.

6. CONCLUSION

Generative models that iteratively synthesize audio clips
sparked great success to text-to-audio synthesis (TTA).
However, due to hundreds of iterations required in the in-
ference phase and large amount of model parameters, high-
quality TTA systems remain inefficient. To address the
challenges, we propose SpecMaskGIT, a light-weighted,
efficient yet effective TTA model based on the masked
generative modeling of spectrograms. SpecMaskGIT syn-
thesizes realistic audio clips by less than 16 iterations, an
order-of-magnitude less than previous iterative TTA meth-
ods. It also outperforms larger discrete models in the TTA
benchmark, while being real-time with 4 CPU cores or
even 30× faster with a GPU. Compared to similar meth-
ods, SpecMaskGIT is more flexible in downstream tasks
such as zero-shot bandwidth extension. Moreover, we in-
terprete SpecMaskGIT as a generative extension to audio
MAE and shed light on its audio representation learning
potential. We hope our work inspires the exploration of
masked audio modeling toward further diverse scenarios.

7. REFERENCES

[1] Y. Zhang, Y. Ikemiya, G. Xia, N. Murata, M. Martínez,
W.-H. Liao, Y. Mitsufuji, and S. Dixon, “Musicmagus:
Zero-shot text-to-music editing via diffusion models,”
arXiv preprint arXiv:2402.06178, 2024.

[2] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou,
and D. Yu, “Diffsound: Discrete diffusion model for
text-to-sound generation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2023.

[3] R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li,
Z. Ye, J. Liu, X. Yin, and Z. Zhao, “Make-an-audio:
Text-to-audio generation with prompt-enhanced diffu-
sion models,” in International Conference on Machine
Learning. PMLR, 2023, pp. 13 916–13 932.

[4] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic,
W. Wang, and M. D. Plumbley, “Audioldm: Text-to-
audio generation with latent diffusion models,” arXiv
preprint arXiv:2301.12503, 2023.

[5] M. Comunità, R. F. Gramaccioni, E. Postolache,
E. Rodolà, D. Comminiello, and J. D. Reiss, “Sync-
fusion: Multimodal onset-synchronized video-to-audio
foley synthesis,” in ICASSP 2024-2024 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2024, pp. 936–940.

[6] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Dé-
fossez, J. Copet, D. Parikh, Y. Taigman, and Y. Adi,
“Audiogen: Textually guided audio generation,” arXiv
preprint arXiv:2209.15352, 2022.

[7] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov,
O. Pietquin, M. Sharifi, D. Roblek, O. Teboul,
D. Grangier, M. Tagliasacchi et al., “Audiolm: a
language modeling approach to audio generation,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 2023.

[8] G. Li, X. Xu, L. Dai, M. Wu, and K. Yu, “Diverse
and vivid sound generation from text descriptions,” in
ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2023, pp. 1–5.

[9] J. Huang, Y. Ren, R. Huang, D. Yang, Z. Ye, C. Zhang,
J. Liu, X. Yin, Z. Ma, and Z. Zhao, “Make-an-audio
2: Temporal-enhanced text-to-audio generation,” arXiv
preprint arXiv:2305.18474, 2023.

[10] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T.
Freeman, “Maskgit: Masked generative image trans-
former,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
11 315–11 325.

[11] H. F. Garcia, P. Seetharaman, R. Kumar, and B. Pardo,
“Vampnet: Music generation via masked acoustic
token modeling,” arXiv preprint arXiv:2307.04686,
2023.

[12] A. Ziv, I. Gat, G. L. Lan, T. Remez, F. Kreuk, A. Dé-
fossez, J. Copet, G. Synnaeve, and Y. Adi, “Masked au-
dio generation using a single non-autoregressive trans-
former,” arXiv preprint arXiv:2401.04577, 2024.

[13] D. Ghosal, N. Majumder, A. Mehrish, and S. Po-
ria, “Text-to-audio generation using instruction-tuned
llm and latent diffusion model,” arXiv preprint
arXiv:2304.13731, 2023.

[14] H. Liu, Q. Tian, Y. Yuan, X. Liu, X. Mei, Q. Kong,
Y. Wang, W. Wang, Y. Wang, and M. D. Plumb-
ley, “Audioldm 2: Learning holistic audio genera-
tion with self-supervised pretraining,” arXiv preprint
arXiv:2308.05734, 2023.

[15] K. Koutini, J. Schlüter, H. Eghbal-Zadeh, and G. Wid-
mer, “Efficient training of audio transformers with
patchout,” arXiv preprint arXiv:2110.05069, 2021.

[16] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and
K. Kashino, “Masked spectrogram modeling using
masked autoencoders for learning general-purpose au-
dio representation,” arXiv:2204.12260, 2022.

[17] P.-Y. Huang, H. Xu, J. Li, A. Baevski, M. Auli,
W. Galuba, F. Metze, and C. Feichtenhofer, “Masked
autoencoders that listen,” NeurIPS, vol. 35, pp. 28 708–
28 720, 2022.

[18] Z. Zhong, H. Shi, M. Hirano, K. Shimada, K. Tateishi,
T. Shibuya, S. Takahashi, and Y. Mitsufuji, “Extending
audio masked autoencoders toward audio restoration,”
in IEEE WASPAA 2023, 2023, pp. 1–5.

[19] S.-B. Kim, S.-H. Lee, H.-Y. Choi, and S.-W. Lee, “Au-
dio super-resolution with robust speech representation
learning of masked autoencoder,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
vol. 32, pp. 1012–1022, 2024.

[20] S. Yang, Z. Zhong, M. Zhao, S. Takahashi, M. Ishii,
T. Shibuya, and Y. Mitsufuji, “Visual echoes: A simple
unified transformer for audio-visual generation,” arXiv
preprint arXiv:2405.14598, 2024.

[21] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[22] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” arXiv preprint arXiv:2005.00341, 2020.

[23] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Syn-
naeve, Y. Adi, and A. Défossez, “Simple and control-
lable music generation,” Advances in Neural Informa-
tion Processing Systems, vol. 36, 2024.

[24] A. Van Den Oord, O. Vinyals et al., “Neural discrete
representation learning,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[25] V. Iashin and E. Rahtu, “Taming visually guided sound
generation,” arXiv preprint arXiv:2110.08791, 2021.

[26] K. Saito, D. Kim, T. Shibuya, C.-H. Lai, Z. Zhong,
Y. Takida, and Y. Mitsufuji, “Soundctm: Uniting score-
based and consistency models for text-to-sound gener-
ation,” arXiv preprint arXiv:2405.18503, 2024.

[27] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative ad-
versarial networks for efficient and high fidelity speech
synthesis,” NeurIPS, vol. 33, pp. 17 022–17 033, 2020.

[28] T. Shibuya, Y. Takida, and Y. Mitsufuji, “Bigvsan: En-
hancing gan-based neural vocoders with slicing ad-
versarial network,” arXiv preprint arXiv:2309.02836,
2023.

[29] K. Kumar, R. Kumar, T. De Boissiere, L. Gestin, W. Z.
Teoh, J. Sotelo, A. De Brebisson, Y. Bengio, and A. C.
Courville, “Melgan: Generative adversarial networks
for conditional waveform synthesis,” Advances in neu-
ral information processing systems, vol. 32, 2019.

[30] S.-g. Lee, W. Ping, B. Ginsburg, B. Catan-
zaro, and S. Yoon, “Bigvgan: A universal neu-
ral vocoder with large-scale training,” arXiv preprint
arXiv:2206.04658, 2022.

[31] T. Li, H. Chang, S. Mishra, H. Zhang, D. Katabi, and
D. Krishnan, “Mage: Masked generative encoder to
unify representation learning and image synthesis,” in
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, pp. 2142–
2152.

[32] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick,
and S. Dubnov, “Large-scale contrastive language-
audio pretraining with feature fusion and keyword-to-
caption augmentation,” in ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023, pp. 1–5.

[33] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and
A. Courville, “Film: Visual reasoning with a general
conditioning layer,” in Proceedings of the AAAI con-
ference on artificial intelligence, vol. 32, no. 1, 2018.

[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly et al., “An image
is worth 16x16 words: Transformers for image recog-
nition at scale,” ICLR 2021, 2021.

[35] J. Ho and T. Salimans, “Classifier-free diffusion guid-
ance,” arXiv preprint arXiv:2207.12598, 2022.

[36] H. Chang, H. Zhang, J. Barber, A. Maschinot,
J. Lezama, L. Jiang, M.-H. Yang, K. Murphy, W. T.
Freeman, M. Rubinstein et al., “Muse: Text-to-image
generation via masked generative transformers,” arXiv
preprint arXiv:2301.00704, 2023.

[37] V. Besnier and M. Chen, “A pytorch reproduction of
masked generative image transformer,” arXiv preprint
arXiv:2310.14400, 2023.

[38] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter,
“Audio set: An ontology and human-labeled dataset for
audio events,” in 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP).
IEEE, 2017, pp. 776–780.

[39] R. Wightman, “Pytorch image models,” https://github.
com/rwightman/pytorch-image-models, 2019.

[40] C. D. Kim, B. Kim, H. Lee, and G. Kim, “Audiocaps:
Generating captions for audios in the wild,” in Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 119–132.

[41] “A lightweight library of frechet audio distance
(fad) calculation,” https://github.com/gudgud96/
frechet-audio-distance.

[42] K. Kilgour, M. Zuluaga, D. Roblek, and M. Shar-
ifi, “Fr\’echet audio distance: A metric for evalu-
ating music enhancement algorithms,” arXiv preprint
arXiv:1812.08466, 2018.

[43] E. Moliner, M. Turunen, F. Elvander, and V. Välimäki,
“A diffusion-based generative equalizer for music
restoration,” arXiv preprint arXiv:2403.18636, 2024.

[44] E. Law, K. West, M. I. Mandel, M. Bay, and
J. S. Downie, “Evaluation of algorithms using games:
The case of music tagging,” in Proceedings of the
10th International Society for Music Information
Retrieval Conference, ISMIR 2009, Kobe International
Conference Center, Kobe, Japan, October 26-30,
2009, K. Hirata, G. Tzanetakis, and K. Yoshii,
Eds. International Society for Music Information
Retrieval, 2009, pp. 387–392. [Online]. Available:
http://ismir2009.ismir.net/proceedings/OS5-5.pdf

[45] Y. Li, R. Yuan, G. Zhang, Y. Ma, X. Chen, H. Yin,
C. Lin, A. Ragni, E. Benetos, N. Gyenge, R. Dan-
nenberg, R. Liu, W. Chen, G. Xia, Y. Shi, W. Huang,
Y. Guo, and J. Fu, “Mert: Acoustic music understand-
ing model with large-scale self-supervised training,”
2023.

[46] J. Spijkervet and J. A. Burgoyne, “Contrastive
learning of musical representations,” arXiv preprint
arXiv:2103.09410, 2021.

[47] J. Pons and X. Serra, “musicnn: Pre-trained convolu-
tional neural networks for music audio tagging,” arXiv
preprint arXiv:1909.06654, 2019.

[48] M. C. McCallum, F. Korzeniowski, S. Oramas,
F. Gouyon, and A. Ehmann, “Supervised and unsuper-
vised learning of audio representations for music un-
derstanding,” in ISMIR 2022, 2022.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/gudgud96/frechet-audio-distance
https://github.com/gudgud96/frechet-audio-distance
http://ismir2009.ismir.net/proceedings/OS5-5.pdf

[49] H. Liu, W. Choi, X. Liu, Q. Kong, Q. Tian, and
D. Wang, “Neural vocoder is all you need for speech
super-resolution,” arXiv preprint arXiv:2203.14941,
2022.

[50] H. Liu, K. Chen, Q. Tian, W. Wang, and M. D.
Plumbley, “Audiosr: Versatile audio super-resolution
at scale,” in ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2024, pp. 1076–1080.

[51] R. Castellon, C. Donahue, and P. Liang, “Codified
audio language modeling learns useful representa-
tions for music information retrieval,” arXiv preprint
arXiv:2107.05677, 2021.

