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ABSTRACT

Footsteps are among the most ubiquitous sound effects in multimedia applications. There is substantial research
into understanding the acoustic features and developing synthesis models for footstep sound effects. In this paper,
we present a first attempt at adopting neural synthesis for this task. We implemented two GAN-based architectures
and compared the results with real recordings as well as six traditional sound synthesis methods. Our architectures
reached realism scores as high as recorded samples, showing encouraging results for the task at hand.

1 Introduction

When sound designers are given the task of creating
sound effects for movies, video games or radio shows,
they have essentially two options: pre-recorded sam-
ples or procedural audio. In the first case, they usually
rely on large libraries of high quality audio recordings,
from which they have to select, edit and mix samples
for each event they need to sonify. For a realistic result,
especially in video games where the same actions are
repeated many times, several samples are selected for
every event and randomised during action. This creates
challenges in terms of memory requirements, assets
management and implementation time.

Alternatively, procedural audio [1] aims to synthesise
sound effects in real time, based on a set of input param-
eters. In the context of video games, these parameters
might come from the specific interaction of a character
with the environment. This approach presents chal-
lenges in terms of development of procedural models
which can synthesise high quality and realistic audio,

as well as finding the right parameters values for each
sound event.

Footsteps sounds are a typical example of the chal-
lenges of sound design. It is an omnipresent sound,
which is generally fairly repetitive, but on which the
human ear is being constantly trained. In fact, it is
possible for a subject to identify from recorded or syn-
thesised footsteps, things like: gender [2], emotions
[3], posture [4], identity [5], ground materials [6], and
type of locomotion [7].

Thus, it is not surprising that researchers put substan-
tial efforts into understanding the acoustic features [8]
and developing synthesis models of footsteps sounds.
Cook [9] made a first attempt at synthesising footsteps
on different surfaces, based on his previous work on
physically-informed stochastic models (PhISM) [10].
Another physically-informed model - based on using a
stochastic controller to drive sums of microscopic im-
pacts - was proposed by Fontana and Bresin [11]. De-
Witt and Bresin [12] proposed a model that included the



Comunità, Phan, and Reiss Neural synthesis of footsteps sound effects

user’s emotion parameter. Farnell [13] instead, devel-
oped a procedural model by studying the characteristics
of locomotion in primates. In [14] Turchet developed
physical and physically-inspired models coupled with
additive synthesis and signals multiplication.

To this day, there has not yet been an attempt at ex-
ploring the use of neural networks for the synthesis
of footsteps sounds although there is substantial litera-
ture exploring neural synthesis of broadband impulsive
sounds, such as drums samples, which have some sim-
ilarities to footsteps. One of the first attempts was in
[15], where Donahue et al. developed WaveGAN - a
generative adversarial network for unconditional au-
dio synthesis. Another example of neural synthesis of
drums is [16], where the authors used a Progressive
Growing GAN. Variational autoencoders [17] and U-
Nets [18] have also been used for the same task. But,
the application of recent developments to neural syn-
thesis of sound effects is yet to be explored. We could
only find one other work [19], related to the present
study, where the authors focused on synthesis of knock-
ing sounds with emotional content using a conditional
WaveGAN.

In this paper we describe the first attempt at neural
synthesis of footsteps sound effects. In Section 2, we
propose a hybrid architecture that improves the quality
and better approximates the real data distribution, with
respect to a standard conditional WaveGAN. Objective
evaluation of this architecture is provided in Section 3.
Section 4 reports on the first listening test that compares
“traditional” and neural synthesis models on the task at
hand. Discussion and conclusions are given in Section
5. We also share our code1 and encourage the reader to
listen to the audio samples 2.

2 Architecture

2.1 Data

To train our models we curated a small dataset (81
samples) using free footsteps sounds available on the
Zapsplat website3. These are high quality samples,
recorded by Foley artists using a single type of shoes
(women, high heels) on seven surfaces (carpet, deck,
metal, pavement, rug, wood and wood internal). The

1https://github.com/mcomunita/hifi-wavegan-footsteps
2https://mcomunita.github.io/hifi-wavegan-footsteps_page
3https://www.zapsplat.com/sound-effect-packs/footsteps-in-

high-heels

samples were converted to WAV file format, resampled
at 16kHz, time aligned and normalised to -6dBFS.

2.2 Generator

The original WaveGAN generator [15] was designed
to synthesise 16384 samples (∼1s at 16kHz sampling
frequency); and afterwards extended to 32768 or 65536
samples4 (∼2s and ∼4s at 16kHz). We adapted the
architecture to synthesise 8192 samples, which is suf-
ficient to capture all footsteps samples in our dataset.
As shown in Fig. 1, the generator expands the latent
variable z to the final audio output size. After reshaping
and concatenation with the conditioning label [19, 20],
the output is synthesised by passing the input through
5 upsampling 1-D convolutional layers. Upsampling is
obtained by: zero-stuffing or nearest neighbour, linear
or cubic interpolation. Zero-stuffing plus 1-D convolu-
tion is equivalent to using 1-D transposed convolution
with stride equal to the upsampling rate. In the other
cases, we split the operation into upsampling and 1-
D convolution with stride of 1. Every convolutional
layer uses a kernel size of 25, as in the original de-
sign. Differently from the original, we included batch
normalisation layers after each convolution. With the
exception of the last layer, the number of output chan-
nels is halved at each convolution layer.

2.3 Discriminator

Recent results in the field of neural speech synthesis
[21, 22, 23, 24, 25, 26] have shown how GAN-based
vocoders are capable of reaching state-of-the-art results
in terms of mean opinion scores. You et al. [27] hy-
pothesised that this success is not related to the specific
design choices or training strategies; they identified it
in the multi-resolution discriminating framework. In
their work, the authors trained 6 different generators us-
ing the same discriminator (Hifi-GAN - [26]) reaching
very similar performance independently of the specific
generator.

We experimented with a similar approach by imple-
menting conditional versions of WaveGAN and HiFi-
GAN discriminators. Our WaveGAN discriminator
was again adapted to 8192 samples of the original ar-
chitecture, based on 5 1-D convolutional layers with
stride of 4 (see Fig. 2). The HiFi-GAN discrimina-
tor is made of two separate discriminators (multi-scale

4https://github.com/chrisdonahue/wavegan
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Fig. 1: WaveGAN generator.

and multi-period) each of which is made of several
sub-discriminators that work with inputs of different
resolutions. The multi-scale discriminator works on
raw audio, ×2 average-pooled and ×4 average-pooled
audio (i.e., a downsampled and smoothed version of
the original signal). The multi-period discriminator
works on “equally spaced samples of an input audio;
the space is given as period p”. The periods are set in
the original model to 2, 3, 5, 7 and 11.

2.4 Loss and Training Procedure

We trained the two architectures - WaveGAN generator
and discriminator (referred to as WaveGAN), Wave-
GAN generator and HiFi-GAN discriminator (referred
to as HiFi-WaveGAN) - using different paradigms.

In the first case we opted for a Wasserstein GAN with
gradient penalty [28] (WGAN-GP), which has been
shown to improve training stability and help conver-
gence towards a minimum which approximates better
the real data distribution as well as the synthesised
samples’ quality. When training a WGAN-GP the dis-
criminator’s weights were updated several times for
each update of the generator; we followed the standard
approach of 5 to 1 updates ratio.

For HiFi-WaveGAN we followed the approach sug-
gested in [26], opting for least squares GAN (LS-GAN)
[29], where the binary cross-entropy terms of the orig-
inal GAN [30] are replaced with least squares losses.
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Fig. 2: WaveGAN discriminator.

[26] included additional losses for the generator; specif-
ically, a mel-spectrogram loss and a feature match-
ing loss. The mel-spectrogram loss measures the `1-
distance between the mel-spectrogram of a synthesised
and a ground truth waveforms. We discarded this term
since, differently from HiFi-GAN, our generator was
not designed and trained to synthesise waveforms from
ground-truth spectrograms. However, we kept the fea-
ture matching loss, which measures the `1-distance
of the features extracted at every level of each sub-
discriminator, between real and generated samples. See
[26] for a more detailed description of each loss term.
The final losses for our HiFi-WaveGAN were:

LG = LAdv(G;D)+λ f mLFM,

LD = LAdv(D;G),

where LG and LD are the generator and discriminator
total losses with LAdv(G;D) and LAdv(D;G) the ad-
versarial loss terms for generator and discriminator and
λ f mLFM the feature matching loss. Both architectures
were trained for 120k batches, with a batch size of 16
and a learning rate of 0.0001. WaveGAN used Adam
while HiFi-WaveGAN used AdamW optimisers.

3 Objective Evaluation

There are no formalised methods to reliably evaluate
the quality and diversity of synthesised audio, but there
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Fig. 3: Graphs representing Fréchet Audio Distance (A), Kernel Inception Distance (B) and Maximum Mean
Discrepancy (C) for our models.

are several metrics which are commonly adopted to
analyse and compare neural synthesis models. We
followed a similar approach to [16] for objective evalu-
ation, where the authors relied on Inception Score (IS),
Kernel Inception Distance (KID) and Fréchet Audio
Distance (FAD). We also relied on the maximum mean
discrepancy (MMD) [31] as a measure of similarity
between real and synthesised samples, using the same
formulation adopted in [32], and computed the MMD
using the `1-distance between OpenL3 embeddings
[33] (env, mel128, 512)5.

To analyse whether our models were capable of learn-
ing the real data distribution - and to verify that they
were not affected by overfitting or mode collapse -
we used principal components analysis (PCA) on the
OpenL3 embeddings of real and synthesised samples.
We generated 1000 samples for each class and plot
the results of PCA in Fig. 4. It can be seen that HiFi-
WaveGAN reached a better approximation of the real
data without collapsing into synthesising only sam-
ples that were seen during training. However, there
is currently no way to establish a correlation between
distance in the embedding space with distance in terms
of human perception. It is therefore not possible to
comment on the diversity of synthesised samples from
these results.

Instead, we used IS, which gave us a way to measure
diversity and semantic discriminability. This measure
ranges from 1 to n (with n number of classes) and it
is maximised for models which can generate samples
for all possible classes and that are classified with high
confidence. As classifier, we used the same Inception

5https://github.com/torchopenl3/torchopenl3

Net variant developed in [16] and adapted it to our
domain. We trained the model on a separate dataset
(Zapsplat Misc) obtained by scraping all the freely
available footsteps samples on the Zapsplat website
6 and organised them into 5 classes depending on the
surface material (carpet/rug, deck/boardwalk, metal,
pavement/concrete, wood/wood internal). Likewise,
we merged the training (Zapsplat Heels) and generated
data into the same 5 classes by grouping carpet/rug
and wood/wood internal samples together.

We trained the Inception Net for 100 epochs, reaching
86% validation accuracy. The results are shown in
Table 1. It is interesting to notice how the IS for HiFi-
WaveGAN is slightly higher than it is for the training
data (Zapsplat Heels). Assuming that the synthesised
data cannot reach a higher semantic discriminability
than the data it learned from, the score should be related
to diversity. Which in turn might depend on two factors.
First, we evaluated IS on a number of Hifi-WaveGAN
samples orders of magnitudes greater than the training
data (3500 versus 81). Excluding the case of mode
collapse, this will inherently carry higher diversity. And
second, Hifi-WaveGAN is actually able to synthesise
samples not seen during training, and could therefore
lead to a more diverse set. However, it is not possible to
comment on the “perceptual” diversity of the generated
samples based on IS only.

Fig. 3 shows the other metrics we adopted to com-
pare real (Misc and Heels) and synthesised (HiFi and
Wave) data. For clarity, we represent FAD, KID and
MMD on 3 graphs, where the distance between nodes
is roughly proportional to each metric values (written

6https://www.zapsplat.com
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Dataset IS
Zapsplat Misc 4.139
Zapsplat Heels 3.221

HiFi-WaveGAN 3.411
WaveGAN 3.232

Table 1: Inception Score for training and generated
data.

on the edges). The 3 metrics, which are based on com-
paring embeddings distributions (VGG-ish for FAD,
Inception for KID and OpenL3 for MMD), all depict a
similar picture where HiFi-WaveGAN seems to better
approximate the training data. FAD and KID also place
HiFi-WaveGAN samples nearer to the Misc dataset,
again suggesting that the model is capable of synthe-
sising samples with greater diversity than the training
data. FAD, correlating with human judgement, is also
a measure of the perceived quality of individual sounds
(the lower the FAD, the higher the quality). In our case,
HiFi-WaveGAN also seems to score higher in terms of
quality.

4 Subjective Evaluation

For the subjective evaluation we followed a similar
paradigm to [34]. The Web Audio Evaluation Tool
[35] was adopted to run an audio perceptual evalua-
tion (APE) [36]; a multi-stimulus test in which a par-
ticipant was presented with a series of samples to be
compared and rated on a continuous scale from 0 to
1. On this scale, 4 reference values (very unrealistic,
somewhat unrealistic, somewhat realistic, very realis-
tic) were given at the 0, 0.33, 0.66 and 1 points, respec-
tively. Eight synthesis methods were compared to real
recordings:

1. Procedural model 1 (PM1) - Fontana et al. [11]

2. Procedural model 2 (PM2) - Farnell [13] 7

3. Procedural model 3 (PM3) - Nemisindo [37] 8

4. Sinusoidal plus stochastic (SPS) - Amatriain et al.
[38] 9

5. Statistical model (STAT) - McDermott et al. [39] 10

7http://aspress.co.uk/sd/practical26.html
8https://nemisindo.com/
9https://www.dafx.de/DAFX_Book_Page_2nd_edition/chapter10.html

10https://mcdermottlab.mit.edu/downloads.html

6. Additive synthesis (ADD) - Verron et al. [40] 11

7. WaveGAN (WAVE)

8. HiFi-WaveGAN (HIFI)

To present a more realistic and reliable scenario we pre-
pared 10 s long walks by concatenating single samples.
We started from real recordings and chose - through
informal listening - the time interval between samples
that gave the most realistic result. The same pace was
then replicated for all the other synthesis methods. We
prepared a total of 10 series of 9 walks (1 for each syn-
thesis method plus the real recordings); and presented
each participant with 5 of these series to be able to
compare many different conditions (i.e., shoe types and
surface materials) while keeping the test short.

4.1 Results

A total of 36 participants took part in the online test12.
Of these, 21 identified as male, 8 as female and 7 pre-
ferred not to indicate their gender. 5 of the 36 par-
ticipants were excluded since they had no previous
experience with critical listening tests. Of the remain-
ing participants, all but 1 had experience as: musician
(27 out of 31, years of experience: M = 13, SD = 10.1
and max = 45), sound engineer (21 out of 31, years of
experience: M = 5.3, SD = 5.6, max = 16) or sound
designer (13 out of 31, years of experience: M = 2.4,
SD = 3.5, max = 12). We asked participants to use
headphones and verified that all of them used good
quality devices.

Two criteria were adopted to judge the reliability of
each rating. We used one of the procedural models
(PM1) as an anchor, and excluded all cases where this
model was rated above 0.1. Also, we considered real
recordings to be the reference, and excluded all cases
where they were rated below 0.5. After excluding in-
experienced participants and unreliable conditions, we
obtained 105 valid ratings - out of a total of 180 - for
each synthesis method.

Final results are shown as a boxplot in Fig. 5, with
the mean represented as a white dot and the whiskers
extending to 1.5 the interquartile range.

11http://www.charlesverron.com/spad.html
12http://webprojects.eecs.qmul.ac.uk/mc309/FootEval/

test.html?url=tests/ape_footsteps.xml
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Fig. 4: Scatter plots of principal components analysis on OpenL3 embeddings for: A) Training Data, B) HiFi-
WaveGAN and C) WaveGAN.

Together with the anchor (PM1) (M = 0.03, SD =
0.03), Farnell’s model (PM2) (M = 0.13, SD = 0.2),
statistical (M = 0.17, SD = 0.19), and sinusoidal (M =
0.13, SD = 0.16) modelling, are the lowest rated.

This result is not surprising since Farnell’s procedural
model is a fairly basic implementation, which lacks
the necessary output quality. Statistical modelling is
usually adopted for texture synthesis, and also in those
situations, it shows good results only for very specific
cases (see [34, 39]). Also, sinusoidal modelling is more
suitable for harmonic sounds (e.g. musical instruments)
where the broadband, noisy components play a minor
role in the overall spectrum.

Nemisindo (PM3) (M = 0.38, SD = 0.25), being a
more recent and advanced procedural model, scores
higher than the other two; although, there is a sta-
tistically significant difference with HiFi-WaveGAN
(M = 0.83, SD = 0.19) as reported by a two-tailed t-
test, t(196) = 14.6, p < 0.01.

Additive synthesis, by synthesising sounds as a sum
of five core elements (modal impact, noisy impact,
chirped impact, band-limited noise, equalised noise),
is rated even higher (M = 0.5, SD = 0.27), but sig-
nificantly lower than HiFi-WaveGAN, t(188) = 9.98,
p < 0.01.

Both WaveGAN (M = 0.8, SD = 0.18) and HiFi-
WaveGAN (M = 0.83, SD = 0.19) score as high as the
reference with no statistically significant differences,
t(199) = 0.35, p = 0.72 and t(195) = 0.76, p = 0.45.

We also analysed the ratings by surface material and
show the results in Fig. 6. Since the samples included

PM1
PM2

PM3
STAT

SPS
ADD

WAVE HIFI
REAL

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Results of the subjective evaluation.

in the evaluation were selected randomly, we were
not able to compare the results for every surface ma-
terial. It is difficult to draw definitive conclusions
but nonetheless, the boxplot allows for useful insights.
HiFi-WaveGAN samples are consistently rated higher
than WaveGAN samples, , with metal and wood inter-
nal having the highest mean score. The only material
for which HiFi-WaveGAN scores lower than real sam-
ples is carpet.

Overall, these results show that the two neural synthesis
models manage to capture the important details of the
training data, and allow the generated samples to reach
synthesis quality and realism comparable to recorded
audio.

5 Discussion

We presented a first attempt at neural synthesis of foot-
steps - one of the most common and challenging sound
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Fig. 6: Results of the subjective evaluation.

effects in sound design. In this work, two GANs ar-
chitectures were implemented: a standard conditional
WaveGAN, and a hybrid consisting of a conditional
WaveGAN generator and a conditional HiFi-GAN dis-
criminator. The hybrid architecture improves the audio
quality of generated samples and better approximates
the training data distribution. Differently from what
is commonly suggested in the literature, upsampling
with zero-stuffing gave us better results than nearest
neighbour interpolation. The same is true for linear or
cubic interpolation.

Both objective and subjective evaluation of results were
conducted. It is not common for neural synthesis meth-
ods to be compared with “traditional” synthesis algo-
rithms in a listening test, which makes it impossible
to establish whether a neural synthesis method can ac-
tually reach state-of-the-art results. In this work, we
compared the two architectures with 6 other methods
as well as recorded samples. The two architectures
reached “realism” ratings as high as real sounds. Al-
though, from informal listening tests we would have
expected a greater difference in the ratings. In fact,
samples synthesised by WaveGAN are affected by a
perceivable amount of background noise and distortion,
while the opposite is true for HiFi-WaveGAN.

This opens questions about the definition of realism of
sound effects, to what extent audio quality correlates
with perceived realism, and what other aspects play
a significant role in such judgements. Future work
will focus on increasing the degrees of control and
diversity of synthesised samples, while retaining the
audio quality.
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