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ABSTRACT

Deep learning approaches for black-box modelling of audio ef-
fects have shown promise, however, the majority of existing work
focuses on nonlinear effects with behaviour on relatively short time-
scales, such as guitar amplifiers and distortion. While recurrent and
convolutional architectures can theoretically be extended to capture
behaviour at longer time scales, we show that simply scaling the
width, depth, or dilation factor of existing architectures does not re-
sult in satisfactory performance when modelling audio effects such
as fuzz and dynamic range compression. To address this, we propose
the integration of time-varying feature-wise linear modulation into
existing temporal convolutional backbones, an approach that enables
learnable adaptation of the intermediate activations. We demonstrate
that our approach more accurately captures long-range dependencies
for a range of fuzz and compressor implementations across both time
and frequency domain metrics. We provide sound examples, source
code, and pretrained models to faciliate reproducibility’.

Index Terms— Audio effects, black-box modelling, modulation

1. INTRODUCTION

Audio effects are tools employed by audio engineers and musi-
cians central to shaping the timbre, dynamics, and spatialisation of
sound [1]. Digital emulation of audio effects, often referred to as vir-
tual analogue, ia an area of active research [2—6] with methods often
categorised into white-, grey- and black-box approaches. White-box
modelling relies on complete knowledge of the system and often em-
ploys differential equations, which enables high quality emulations
but often entails a time consuming design process and computation-
ally expensive models [7, 8]. Grey-box approaches [9, 10] combine
a partially theoretical model with input-output measurements. This
greatly reduces the prior knowledge necessary to model a device
while maintaining interpretability, but still requires understanding
of the underlying implementation and carefully designed measure-
ment and optimisation procedures. This motivates black-box models
that enable emulations using only measurements from the device.
Recently, deep learning approaches have seen success in modelling
a range of effects [11-14]. These approaches often take the form
of either recurrent or convolutional networks operating in the time
domain [15-18]. While both architectures have proven successful
across some effects, modelling behaviours on longer time scales has
proven challenging and so far less investigated.

In this work, we focus on nonlinear time-varying audio effects
that exhibit input-dependant behaviour over long time scales, such as
fuzz distortion and dynamic range compression. Distortion effects
often present a challenge due to their highly nonlinear behaviour,
which has been addressed in previous works relying on convolu-
tional networks with short receptive field [16] or simple one-layer
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Fig. 1: State-of-the-art black-box models like GCN-3 [19] ( ) fail
to capture the behaviour of effects with large time constants such
as fuzz (blue). Our proposed approach GCNTEF-3 ( ), which
extends previous convolutional networks with time-varying feature
modulation, enables accurate modelling of this behaviour.

recurrent networks [18]. However, distortion effects such as fuzz can
also pose an additional challenge since they exhibit time-varying be-
haviour over larger time scales due to the attack and release of the
circuit. Fuzz is characterised not only by asymmetrical clipping,
which for sinusoidal inputs results in a rectangular wave output, but
also for its attack and release time constants which modulate the be-
haviour of the device as a function of the input. This results in a
characteristic time-varying distortion, which existing deep learning
based approaches fail to accurately capture, as shown in Fig. 1.

Dynamic range compressors also exhibit time-varying nonlinear
behaviour over a range of timescales. In some cases the release times
of compressors can reach several seconds, such as in the classic LA-
2A compressor. Modelling of compression has been addressed em-
ploying a range of strategies including convolutional-recurrent ar-
chitectures [20], time-frequency representations through autoencod-
ing [21], and shallow temporal convolutional networks with large
receptive field [14]. However, the performance of such approaches
when modelling configurations of these devices with large release
time constants has not been investigated.

We propose a method to model the nonlinear behaviour over large
time-scales such as fuzz and dynamic range compression by incor-
porating time-varying feature modulation (Temporal FILM) [22] into
existing temporal convolutional backbones. This enables adaptation
of the activations of the network as a function of the input signal.
While this is achieved through a simple mechanism of scaling and
shifting the activations, we demonstrate that this enables superior
performance across a range of effects without increasing the recep-
tive field of the main network. Our contributions include the integra-
tion of temporal feature modulation into the black-box audio effect
modelling framework and a set of benchmark datasets comprised of
fuzz and compressor effects with varying time constants, which we
utilise to demonstrate the failure modes of existing approaches and
the ability of our proposed approach to address these limitations.
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2. METHOD

Audio effects are signal processing devices that given an input z €
RY with L samples and a set of P parameters ¢ € R¥ that con-
trol the operation of the system, output a modified version y € R”
of the signal. In this work, we focus on modelling the input-output
function y = f(x, ¢), at one configuration of the device, holding ¢
constant. We aim to design a neural network go(z) that produces a
signal ¢ perceptually indistinguishable from the real output y. The
modelling process involves training go(z) with a dataset of E ex-
amples D = {(zi,yi,$)}.1 containing input-output recordings
(z4,y:) at fixed parameters ¢. A loss function £(3, y) measures the
difference between the output of the network and the target system,
providing a means to update the weights 6 through a given number
of gradient-based optimisation steps.

2.1. Modelling Network

Similar to previous work on distortion effect modelling [12, 16], we
adopt a feedforward WaveNet [23] architecture, also known as a tem-
poral convolutional network (TCN). We refer to this architecture as
the Gated Convolution Network (GCN) since it a special case of the
TCN that utilises gated convolutions. The GCN is composed of M
blocks with each block containing % layers for a total of IV layers.
Each layer in a block is made of a dilated 1-dimensional convolu-
tional layer followed by a gated activation as shown in Fig. 2 (left).
The outputs from each layer are summed through a 1 x 1 convolution
to produce the final output y. We implement several variants of the
base GCN architecture with short, medium and long receptive fields
relying on different number of layers and kernel sizes, and make also
use of rapidly growing dilation factors [14,24,25].

2.2. Temporal FiLM

Feature-wise Linear Modulation (FiLM) is a general-purpose condi-
tioning method that operates on the intermediate features of a neural
network as a function of conditioning signals [26]. Given a con-
ditioning signal x;, FILM learns two functions f and g, which are
used to map the conditioning signal to a set of scaling yn,. = f(x:)
and bias By, = h(x;) parameters for each layer n and channel ¢ of
the network. These parameters are used to modulate the intermediate
activations at each layer z,, . via a feature-wise affine transformation

FiLM(2Zn,c, Vn.c, Bn.c) = Yn.c * Zn,c + Bnc- (1)

In practice, f and h are implemented as a neural network and can be
learned during training of the main network.

While FiLM has proven to be a powerful conditioning method,
it can be further extended to increase the expressivity of the net-
work by leveraging long-range dependencies in the conditioning
signal to vary the modulation of intermediate features across time;
an approach known as Temporal Feature-wise Linear Modulation
(TFiLM) [22]. Using recurrent networks, TFiLM layers modulate
the intermediate features of a convolutional model over time as a
function of the activations at each layer. This has conceptual con-
nections to other input dependant and time-varying conditioning ap-
proaches such as hypernetworks [27] and dynamic convolution [28],
which enable adaptation of the weights of convolutional networks.
However, TFiILM provides a simpler method for adaptation that is
both efficient and often easier to train. Thus far, TFiILM has only
been applied to the task of audio super resolution using UNet-like
architectures and has not yet been integrated in the GCN/TCN
architecture, as we propose in this work.
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Fig. 2: Block diagram of the dilated 1-dimensional gated convolu-
tion block (left) and the Temporal FiLM module (right).
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Fig. 3: Temporal FiLM modulates the intermediate activations of a
convolutional network at each layer by splitting feature maps along
the sequence dimension into 7" blocks z!,. Max pooling is applied to
each block to generate a’,, which is used as input to the LSTM (with
hidden activations h%) that generates scaling and bias parameters.
This illustrates a case when B = 4 and C' = 3. For clarity only the
affine transformation of the first channel is shown.

To capture both nonlinear behaviour and long range temporal de-
pendencies in modelling audio effects, we propose to integrate time-
varying feature-wise linear modulation in the base GCN architec-
ture, which we refer to as GCN with Temporal FILM (GCNTF). In
our formulation, given a sequence of activations z, € R°** from
the n-th layer of a GCN, where C is the number of channels, and
L is the sequence dimension, we split the sequence into 7" blocks
of B samples along the sequence dimension. For each block z?,,
1-dimensional max pooling is applied to downsample the signal by
a factor of B to produce a‘, as shown in Figure 3. Then an LSTM
generates a sequence scaling and bias parameters LSTM,,(a%,) =
(V.05 s Vh.e), (Bh.0s » -y Bh.c) for each channel c. These scaling
and bias parameters are then used to modulate each channel of the
activations individually in each block by an affine transformation

Yn.e = TnecZn.c + Brc: ()

As shown in Fig. 2 (right), the output of each TFiLM module is
sent through a 1 x 1 convolution and combined with the residual con-
nection X,, and sent to the following layer. The output of the TFiLM
module y,, is sent to the final layer of the network where all interme-
diate outputs are mixed together via another 1 x 1 convolution.



3. EXPERIMENTAL DESIGN

To understand how Temporal FiLM aids in the modelling process,
specifically for effects with behaviour at long time scales, we train
models across two effect classes: fuzz and compressor. As baselines,
we considered state-of-the-art convolutional networks [15, 16, 19]
proposed for guitar amplifier and distortion effect modelling. The
models (GCN-1 and GCN-3) have respectively, 1 block of 10 layers
and 2 blocks of 9 layers, dilation growth of 2, kernel size of 3 and
16 channels for every convolutional layer; giving receptive fields of
2047 and 2045 samples (=~ 45ms at f; = 44.1kHz).

While GCN-1 and GCN-3 were successful in modelling guitar
amplifiers and distortion effects, they may not be capable of mod-
elling effects with longer temporal behaviour due to their relatively
small receptive field. To address this, we construct stronger baselines
by extending these models to create variants with longer receptive
fields by adopting larger dilation growth [14]. As a result, GCN-250
has 1 block of 4 layers, kernel size of 41, and dilation growth of 6,
for a receptive field of 250 ms, while GCN-2500 has 1 block of 10
layers, kernel size of 5 and dilation growth of 3 for a receptive field
of 2500 ms. As further baselines, we also include state-of-the-art re-
current networks (LSTM-32 and LSTM-96) [19]. To validate our ap-
proach we then added TFiLM layers to each of the baseline models
to enable time-varying feature modulation. We refer to these mod-
els as: GCNTF-1, GCNTF-3, GCNTF-250, GCNTF-2500, which
results in a total of 12 different models that we considered.

3.1. Experiments

Time constants — To evaluate the ability of the models to cap-
ture behaviour over long time scales, we created a set of specialised
datasets for fuzz and compressor effects. For fuzz, we designed an
analogue circuit (Custom Fuzz) which includes, together with the
typical volume and gain, attack and release controls, which was de-
signed using LiveSpice”. For compressor, we used the digital com-
pressor in Spotify Pedalboard library®, which enables arbitrary con-
trol over the time constants. With these implementations, we then
assembled a dataset of processed electric guitar signals using record-
ings from a subset of the IDMT-SMT-Guitar dataset [29], which con-
tains short musical pieces recorded with two different guitars, for a
total of ~ 28 min of audio. Clean and processed audio were split
in &~ 14 min training data and &~ 7 min each for validation and test.
To make sure to capture the complex dynamic behaviour of our de-
sign the input signal’s amplitude changes randomly every 5 sec. For
Fuzz, each model was trained with 3 different settings for attack and
release times, respectively: 50 ms and 50 ms, 10 ms and 250 ms, 1 ms
and 2500 ms, while for compressor attack and release were set to, re-
spectively: 10 ms and 50 ms, 5 ms and 250 ms, 1 ms and 2500 ms.

Other effects — To further demonstrate the performance of our
approach we also trained models on: Fuzz Face emulation plugin
from Distorque Audio®, the LA-2A compressor from the SignalTrain
dataset [21], and digital compressor, MCompressor, by Melda Pro-
duction’. For the MCompressor, we selected two attack and release
settings: 5ms and 250 ms, 1 ms and 1000 ms. The LA-2A has no
attack and release controls, but it is a complex analogue compressor
design with a “ratio of 3:1, a frequency dependent average attack
time of 10ms and a release time of about 60 ms for 50% of the re-
lease, and anywhere from 1 to 15 seconds for the rest™.

Zhttps://www.livespice.org
3https://github.com/spotify/pedalboard
“http://distorqueaudio.com/plugins/face-bender.html
Shttps://www.meldaproduction.com/MCompressor
Shttps://www.uaudio.com/blog/la-2a-collection-tips-tricks/
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Fig. 4: MR-STFT error for models of fuzz (Custom Fuzz) and com-
pressor (Pedalboard) effects with varying time constants. The best
performing models for each effect configurations are in boldface.

Channel width — To ensure performance of models with TFiLM
is not simply due to the increase in number of trainable parameters,
we compared GCNTF-3 with a larger variant of the GCN-3 model
with C' = 24 channels. This results in both models having ~ 71k
parameters. These models were then trained on the Custom Fuzz
with 1 ms attack and 2500 ms release.

Block size — We conclude our experiments measuring the perfor-
mance of model with TFiLM as a function of the block size B, which
relates to the downsampling factor and adapation rate. We ran ex-
periments with block sizes of B € 32,64, 128, 256, 512, training
GCNTF-3 on the Custom Fuzz with 1 ms attack and 2500 ms release.

3.2. Training details

All models were trained with Adam with weight decay of 1 - 10~*
and an initial learning rate of 5 - 10™2. The learning rate was halved
whenever the validation loss saw no improvement for 10 epochs. We
used early stopping with a patience of 40 epochs on the validation
loss and limited training to 2000 epochs, with most models train-
ing for less than 400 epochs and none reaching the limit. All mod-
els were trained at f; = 44.1kHz with inputs of 112640 samples
(= 2.55) and batch size of 6. We used a combination of the error
in the time and frequency domains, respectively: mean absolute er-
ror (MAE) and multi-resolution short-time Fourier Transform error
(MR-STFT) [30,31], as in previous work [14,32]. The overall loss
is a sum of two terms £ = Lmag + aLmr-strT, With oo = 1.

4. RESULTS

Time constants — Results comparing our proposed approach with
the state-of-the-art for the tasks of modelling Custom Fuzz and Ped-
alboard compressor across attack and release settings are shown in
Fig. 4. Results on fuzz are consistent, with GCNTF-3 performing
best regardless of the time constants and error approximately halved
with respect to the GCN-3. This result demonstrates how the very
short receptive field of the two models (2045 samples) captures the
rich timbre of the fuzz on a short-range, while TFiLM enables mod-
elling long-range dependencies with the past input. Furthermore,
even models with a receptive field sufficient to capture the past con-
text do not capture the device behaviour, fully motivating models
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LA-2A

MComp. (5ms/250ms)

MComp. (1ms/1000ms) Face Bender

Model Params.
L1 MR-STFT L1 MR-STFT L1 MR-STFT L1 MR-STFT

LSTM-32 4.5k 0.012 0.356 0.001 0.239 0.002 0.250 0.004 0.236
LSTM-96 38.1k 0.012 0.323 0.002 0.275 0.002 0.278 0.026 0.379
GCN-1 17.1k 0.012 0.333 0.001 0.201 0.002 0.246 0.004 0.204
GCN-3 32.0k 0.001 0.331 0.022 0.197 0.002 0.255 0.002 0.192
GCN-250 65.6k 0.002 0.339 0.022 0.218 0.033 0.206 0.004 0.222
GCN-2500 26.4k 0.001 0.310 0.022 0.186 0.033 0.184 0.226 0.239
GCNTEF-1 (ours) 38.9k 0.012 0.306 0.022 0.195 0.001 0.176 0.004 0.224
GCNTE-3 (ours) 71.1k 0.001 0.302 0.022 0.182 0.001 0.191 0.001 0.164
GCNTEF-250 (ours) 74.3k 0.011 0.346 3.0e-4 0.174 0.033 0.183 0.003 0.192
GCNTEF-2500 (ours) 48.2k 0.001 0.296 3.1e-4 0.179 0.033 0.167 0.225 0.213

Table 1: Impact of using TFiLM to model LA-2A, MCompressor and Face Bender. Lowest total error for each configuration in boldface.

Model C Params. L1 MR-STFT
GCN-3 16 3197k 0.045 0.502
GCN-3 24 7099k 0.046 0.505
GCNTF-3 (ours) 16 71.14k 0.011 0.279

Table 2: Impact of channel width C' in modelling the Custom Fuzz
with attack of 1ms and release of 2500 ms.

Model B L1 MR-STFT
GCN-3 - 0.045 0.502
GCNTF-3 (ours) 32 0.042 0.538
GCNTF-3 (ours) 64 0.013 0.307
GCNTF-3 (ours) 128 0.011 0.279
GCNTF-3 (ours) 256 0.013 0.288
GCNTF-3 (ours) 512 0.015 0.314

Table 3: Impact of feature modulation block-size B in modelling
the Custom Fuzz with attack of 1 ms and release of 2500 ms.

with TFiLM. To further compare the two models we propose to com-
pute the error across time (e.g., every 8192 samples) and compare the
distributions, as we do in Fig. 5 for fuzz with 2500ms release. We
observe the error for GCN-3 has a higher median and heavier tails
when compared to GCNTF-3. For compressor modelling the results
show improvements when using TFiLM only for long release val-
ues, with GCNTF-3 performing best. Conversely, for both 50 ms and
250 ms release time, LSTM96 shows the lowest error. To understand
how the models performance differ, we show the error distribution in
Fig. 6. Also, by looking at the difference between L1 and MR-STFT
error across time it is possible to identify a divergence around 1.50
minutes, of which we show an excerpt.

Other effects — Results for Face Bender, LA-2A, and MCompres-
sor are shown in Table 1. In almost all cases the use of time-varying
feature modulation results in lower overall error, showing a gener-
alised improvement with respect to the state-of-the-art.

Channel width — Table 2 demonstrates how increasing the number
of the parameters of the base GCN model does not lead to a perfor-
mance improvement. This indicates that is not simply the increased
number of parameters in TFiILM models that leads to an improve-
ment, but instead time-varying modulation of activations.

Block size — Results for our proposed method at different block
sizes are reported in Table 3. For GCNTF-3 trained on Custom Fuzz,
there seems to be an optimal block size of B = 128 samples.
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L1 GCN-3 MR-STFT GCN-3
L1 GCNTF-3 MR-STFT GCNTF-3
0.05 1 0.05 1
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Fig. 5: GCN-3 and GCNTF-3 modelling fuzz with 2500 ms release
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Fig. 6: GCN-3 and GCNTF-3 for compressor with 2500 ms release.
Top: histogram of L1 and MR-STFT error. Middle: difference be-
tween error for the two models. Bottom: waveforms at 1.50 min

5. CONCLUSION

We presented a method for black-box modelling of audio effects
with long-range dependencies by including time-varying feature-
wise modulation into state-of-the-art convolutional models. While
current state-of-the-art fails to model long time-scale behaviours
of effects like fuzz and compressor - which was not known from
previous works - the proposed method successfully captures them
without increasing the receptive field of the processing network.
These results open up future work to extend the approach to time-
varying effects like chorus or tremolo; but also in applications like
the proxy network approach for learning to control effects. Datasets
and source code are provided open source.
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