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Marco Comunità, Huy Phan, Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London, UK

ABSTRACT

Footsteps are among the most ubiquitous sound effects in multime-
dia applications. There is substantial research into understanding
the acoustic features and developing synthesis models for footstep
sound effects. In this paper, we present a first attempt at adopting
neural synthesis for this task. We implemented two GAN-based ar-
chitectures and compared the results with real recordings as well as
six traditional sound synthesis methods. Our architectures reached
realism scores as high as recorded samples, showing encouraging
results for the task at hand.

Index Terms— footsteps, neural synthesis, sound effects, GAN

1. INTRODUCTION

When sound designers are given the task of creating sound effects
for movies, video games or radio shows, they have essentially two
options: pre-recorded samples or procedural audio. In the first case,
they usually rely on large libraries of high quality audio recordings,
from which they have to select, edit and mix samples for each event
they need to sonify. For a realistic result, especially in video games
where the same actions are repeated many times, several samples
are selected for every event and randomised during action. This cre-
ates challenges in terms of memory requirements, assets manage-
ment and implementation time.

Alternatively, procedural audio [1] aims to synthesise sound ef-
fects in real time, based on a set of input parameters. In the context
of video games, these parameters might come from the specific inter-
action of a character with the environment. This approach presents
challenges in terms of development of procedural models which can
synthesise high quality and realistic audio, as well as finding the
right parameters values for each sound event.

Footsteps sounds are a typical example of the challenges of sound
design. It is an omnipresent sound, which is generally fairly repeti-
tive, but on which the human ear is being constantly trained. In fact,
it is possible for a subject to identify from recorded or synthesised
footsteps, things like: gender [2], emotions [3], posture [4], iden-
tity [5], ground materials [6], and type of locomotion [7].

Thus, it is not surprising that researchers put substantial efforts
into understanding the acoustic features [8] and developing synthe-
sis models of footsteps sounds. Cook [9] made a first attempt at syn-
thesising footsteps on different surfaces, based on his previous work
on physically-informed stochastic models (PhISM) [10]. Another
physically-informed model - based on using a stochastic controller
to drive sums of microscopic impacts - was proposed by Fontana
and Bresin [11]. DeWitt and Bresin [12] proposed a model that in-
cluded the user’s emotion parameter. Farnell [13] instead, developed
a procedural model by studying the characteristics of locomotion in
primates. In [14] Turchet et al. developed physical and physically-
inspired models coupled with additive synthesis and signals multi-
plication.

To this day, there has not yet been an attempt at exploring the use
of neural networks for the synthesis of footsteps sounds although
there is substantial literature exploring neural synthesis of broad-
band impulsive sounds, such as drums samples, which have some
similarities to footsteps. One of the first attempts was in [15], where
Donahue et al. developed WaveGAN - a generative adversarial net-
work for unconditional audio synthesis. Another example of neu-
ral synthesis of drums is [16], where the authors used a Progres-
sive Growing GAN. Variational autoencoders [17] and U-Nets [18]
have also been used for the same task. But, the application of re-
cent developments to neural synthesis of sound effects is yet to be
explored. We could only find one other work [19], related to the
present study, where the authors focused on synthesis of knocking
sounds with emotional content using a conditional WaveGAN.

In this paper we describe the first attempt at neural synthesis of
footsteps sound effects. In Section 2, we propose a hybrid architec-
ture that improves the quality and better approximates the real data
distribution, with respect to a standard conditional WaveGAN. Ob-
jective evaluation of this architecture is provided in Section 3. Sec-
tion 4 reports on the first listening test that compares “traditional”
and neural synthesis models on the task at hand. Discussion and
conclusions are given in Section 5.

2. ARCHITECTURE
2.1. Data
To train our models we curated a small dataset (81 samples) using
free footsteps sounds available on the Zapsplat website1. These are
high quality samples, recorded by Foley artists using a single type
of shoes (women, high heels) on seven surfaces (carpet, deck, metal,
pavement, rug, wood and wood internal). The samples were con-
verted to WAV file format, resampled at 16kHz, time aligned and
normalised to -6dBFS.

2.2. Generator
The original WaveGAN generator [15] was designed to synthesise
16384 samples (∼1s at 16kHz sampling frequency); and afterwards
extended to 32768 or 65536 samples2 (∼2s and ∼4s at 16kHz). We
adapted the architecture to synthesise 8192 samples, which is suf-
ficient to capture all footsteps samples in our dataset. As shown in
Fig. 1, the generator expands the latent variable z to the final au-
dio output size. After reshaping and concatenation with the condi-
tioning label [19, 20], the output is synthesised by passing the input
through 5 upsampling 1-D convolutional layers. Upsampling is ob-
tained by: zero-stuffing or nearest neighbour, linear or cubic inter-
polation. Zero-stuffing plus 1-D convolution is equivalent to using
1-D transposed convolution with stride equal to the upsampling rate.
In the other cases, we split the operation into upsampling and 1-D

1https://www.zapsplat.com/sound-effect-packs/footsteps-in-high-heels
2https://github.com/chrisdonahue/wavegan
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Fig. 1: WaveGAN generator.

convolution with stride of 1. Every convolutional layer uses a kernel
size of 25, as in the original design. Differently from the original, we
included batch normalisation layers after each convolution. With the
exception of the last layer, the number of output channels is halved
at each convolution layer.

2.3. Discriminator
Recent results in the field of neural speech synthesis [21–26] have
shown how GAN-based vocoders are capable of reaching state-of-
the-art results in terms of mean opinion scores. You et al. [27]
hypothesised that this success is not related to the specific de-
sign choices or training strategies; they identified it in the multi-
resolution discriminating framework. In their work, the authors
trained 6 different generators using the same discriminator (Hifi-
GAN - [26]) reaching very similar performance independently of
the specific generator.

We experimented with a similar approach by implementing con-
ditional versions of WaveGAN and HiFi-GAN discriminators. Our
WaveGAN discriminator was again adapted to 8192 samples of the
original architecture, based on 5 1-D convolutional layers with stride
of 4 (see Fig. 2). The HiFi-GAN discriminator is made of two sep-
arate discriminators (multi-scale and multi-period) each of which is
made of several sub-discriminators that work with inputs of different
resolutions. The multi-scale discriminator works on raw audio, ×2
average-pooled and ×4 average-pooled audio (i.e., a downsampled
and smoothed version of the original signal). The multi-period dis-
criminator works on “equally spaced samples of an input audio; the
space is given as period p”. The periods are set in the original model
to 2, 3, 5, 7 and 11.

2.4. Loss and Training Procedure
We trained the two architectures - WaveGAN generator and discrim-
inator (referred to as WaveGAN), WaveGAN generator and HiFi-
GAN discriminator (referred to as HiFi-WaveGAN) - using different
paradigms.

In the first case we opted for a Wasserstein GAN with gradient
penalty [28] (WGAN-GP), which has been shown to improve train-
ing stability and help convergence towards a minimum which ap-
proximates better the real data distribution as well as the synthesised
samples’ quality. When training a WGAN-GP the discriminator’s
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Fig. 2: WaveGAN discriminator.

weights were updated several times for each update of the generator;
we followed the standard approach of 5 to 1 updates ratio.

For HiFi-WaveGAN we followed the approach suggested in [26],
opting for least squares GAN (LS-GAN) [29], where the binary
cross-entropy terms of the original GAN [30] are replaced with least
squares losses. [26] included additional losses for the generator;
specifically, a mel-spectrogram loss and a feature matching loss.
The mel-spectrogram loss measures the `1-distance between the
mel-spectrogram of a synthesised and a ground truth waveforms.
We discarded this term since, differently from HiFi-GAN, our gen-
erator was not designed and trained to synthesise waveforms from
ground-truth spectrograms. However, we kept the feature matching
loss, which measures the `1-distance of the features extracted at
every level of each sub-discriminator, between real and generated
samples. See [26] for a more detailed description of each loss term.
The final losses for our HiFi-WaveGAN were:

LG = LAdv(G;D) + λfmLFM ,

LD = LAdv(D;G),

where LG and LD are the generator and discriminator total losses
with LAdv(G;D) and LAdv(D;G) the adversarial loss terms for
generator and discriminator and λfmLFM the feature matching loss.
Both architectures were trained for 120k batches, with a batch size
of 16 and a learning rate of 0.0001. WaveGAN used Adam while
HiFi-WaveGAN used AdamW optimisers.

3. OBJECTIVE EVALUATION

There are no formalised methods to reliably evaluate the quality and
diversity of synthesised audio, but there are several metrics which are
commonly adopted to analyse and compare neural synthesis mod-
els. We followed a similar approach to [16] for objective evaluation,
where the authors relied on Inception Score (IS), Kernel Inception
Distance (KID) and Fréchet Audio Distance (FAD). We also relied
on the maximum mean discrepancy (MMD) [31] as a measure of
similarity between real and synthesised samples, using the same for-
mulation adopted in [32], and computed the MMD using the `1-
distance between OpenL3 embeddings [33] (env, mel128, 512)3.

3https://github.com/torchopenl3/torchopenl3

https://github.com/torchopenl3/torchopenl3
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Fig. 3: Graphs representing Fréchet Audio Distance (A), Kernel Inception Distance (B) and Maximum Mean Discrepancy (C) for our models.

To analyse whether our models were capable of learning the real
data distribution - and to verify that they were not affected by over-
fitting or mode collapse - we used principal components analysis
(PCA) on the OpenL3 embeddings of real and synthesised samples.
We generated 1000 samples for each class and plot the results of
PCA in Fig. 4. It can be seen that HiFi-WaveGAN reached a bet-
ter approximation of the real data without collapsing into synthesis-
ing only samples that were seen during training. However, there is
currently no way to establish a correlation between distance in the
embedding space with distance in terms of human perception. It is
therefore not possible to comment on the diversity of synthesised
samples from these results.

Instead, we used IS, which gave us a way to measure diversity and
semantic discriminability. This measure ranges from 1 to n (with n
number of classes) and it is maximised for models which can gener-
ate samples for all possible classes and that are classified with high
confidence. As classifier, we used the same Inception Net variant
developed in [16] and adapted it to our domain. We trained the
model on a separate dataset (Zapsplat Misc) obtained by scraping
all the freely available footsteps samples on the Zapsplat website 4

and organised them into 5 classes depending on the surface material
(carpet/rug, deck/boardwalk, metal, pavement/concrete, wood/wood
internal). Likewise, we merged the training (Zapsplat Heels) and
generated data into the same 5 classes by grouping carpet/rug and
wood/wood internal samples together.

We trained the Inception Net for 100 epochs, reaching 86% vali-
dation accuracy. The results are shown in Table 1. It is interesting to
notice how the IS for HiFi-WaveGAN is slightly higher then it is for
the training data (Zapsplat Heels). Assuming that the synthesised
data cannot reach a higher semantic discriminability than the data it
learned from, the score should be related to diversity. Which in turn
might depend on two factors. First, we evaluated IS on a number of
Hifi-WaveGAN samples orders of magnitudes greater than the train-
ing data (3500 versus 81). Excluding the case of mode collapse, this
will inherently carry higher diversity. And second, Hifi-WaveGAN
is actually able to synthesise samples not seen during training, and
could therefore lead to a more diverse set. However, it is not possible
to comment on the “perceptual” diversity of the generated samples
based on IS only.

Fig. 3 shows the other metrics we adopted to compare real (Misc
and Heels) and synthesised (HiFi and Wave) data. For clarity, we
represent FAD, KID and MMD on 3 graphs, where the distance
between nodes is roughly proportional to each metric values (writ-
ten on the edges). The 3 metrics, which are based on comparing
embeddings distributions (VGG-ish for FAD, Inception for KID
and OpenL3 for MMD), all depict a similar picture where HiFi-
WaveGAN seems to better approximate the training data. FAD and

4https://www.zapsplat.com

Dataset IS
Zapsplat Misc 4.139
Zapsplat Heels 3.221

HiFi-WaveGAN 3.411
WaveGAN 3.232

Table 1: Inception Score for training and generated data.

KID also place HiFi-WaveGAN samples nearer to the Misc dataset,
again suggesting that the model is capable of synthesising samples
with greater diversity than the training data. FAD, correlating with
human judgement, is also a measure of the perceived quality of
individual sounds (the lower the FAD, the higher the quality). In our
case, HiFi-WaveGAN also seems to score higher in terms of quality.

4. SUBJECTIVE EVALUATION

For the subjective evaluation we followed a similar paradigm to [34].
The Web Audio Evaluation Tool [35] was adopted to run an audio
perceptual evaluation (APE) [36]; a multi-stimulus test in which a
participant was presented with a series of samples to be compared
and rated on a continuous scale from 0 to 1. On this scale, 4 ref-
erence values (very unrealistic, somewhat unrealistic, somewhat re-
alistic, very realistic) were given at the 0, 0.33, 0.66 and 1 points,
respectively. Eight synthesis methods were compared to real record-
ings:

1. Procedural model 1 (PM1) by Fontana and Bresin [11]
2. Procedural model 2 (PM2) by Farnell [13] 5

3. Procedural model 3 (PM3) from Nemisindo [37] 6

4. Sinusoidal plus stochastic (SPS) by Amatriain et al. [38] 7

5. Statistical modelling (STAT) by McDermott et al. [39] 8

6. Additive synthesis (ADD) by Verron et al. [40] 9

7. WaveGAN (WAVE)
8. HiFi-WaveGAN (HIFI)

To present a more realistic and reliable scenario we prepared 10 s
long walks by concatenating single samples. We started from real
recordings and chose - through informal listening - the time interval
between samples that gave the most realistic result. The same pace
was then replicated for all the other synthesis methods. We prepared
a total of 10 series of 9 walks (1 for each synthesis method plus the
real recordings); and presented each participant with 5 of these series

5http://aspress.co.uk/sd/practical26.html
6https://nemisindo.com/
7https://www.dafx.de/DAFX Book Page 2nd edition/chapter10.html
8https://mcdermottlab.mit.edu/downloads.html
9http://www.charlesverron.com/spad.html

https://www.zapsplat.com
http://aspress.co.uk/sd/practical26.html
https://nemisindo.com/
https://www.dafx.de/DAFX_Book_Page_2nd_edition/chapter10.html
https://mcdermottlab.mit.edu/downloads.html
http://www.charlesverron.com/spad.html


Fig. 4: Scatter plots of principal components analysis on OpenL3 embeddings for: A) Training Data, B) HiFi-WaveGAN and C) WaveGAN.

to be able to compare many different conditions (i.e., shoe types and
surface materials) while keeping the test short.

4.1. Results
A total of 19 participants took part in the online test10. Of these, 10
identified as male, 6 as female and 3 preferred not to indicate their
gender. 3 participants were excluded since they had no previous ex-
perience with critical listening tests. Of the remaining participants,
all but 1 had experience as: musicians (15 out of 16, µ = 9.7,
σ = 7.6 and max = 23 years), sound engineers (11 out of 16,
µ = 4.6, σ = 7.6, max = 15 years) and sound designers (7 out
of 16, µ = 1.7, σ = 2.9, max = 10 years). We also enquired about
the headphone models and verified that all participants used good
quality devices.

Two criteria were adopted to judge the reliability of each rating.
We used one of the procedural models (PM1) as an anchor, and ex-
cluded all cases where this model was rated above 0.1. Also, we
considered real recordings to be the reference, and excluded all cases
where they were rated below 0.5.

Final results are shown in Fig. 5. Together with the anchor (PM1),
Farnell’s model (PM2), as well as statistical and sinusoidal mod-
elling, are the lowest rated. This result is not surprising since Far-
nell’s procedural model is a fairly basic implementation, which lacks
the necessary output quality. Statistical modelling is usually adopted
for texture synthesis, and also in those situations, it shows good re-
sults only for very specific cases (see [34, 39]). Also, sinusoidal
modelling is more suitable for harmonic sounds (e.g. musical instru-
ments) where the broadband, noisy components play a minor role in
the overall spectrum. Nemisindo (PM3), being a more recent and
advanced procedural model, scores higher than the other two; and
additive synthesis, by synthesising sounds as a sum of five core el-
ements (modal impact, noisy impact, chirped impact, band-limited
noise, equalised noise), is rated even higher. Both WaveGAN and
HiFi-WaveGAN score as high as the reference. This result shows
that the two neural synthesis models manage to capture all the im-
portant details of the training data, and allow the generated samples
to reach synthesis quality and realism comparable to recorded audio.

5. DISCUSSION

We presented a first attempt at neural synthesis of footsteps - one
of the most common and challenging sound effects in sound de-
sign. In this work, two GANs architectures were implemented: a

10http://webprojects.eecs.qmul.ac.uk/mc309/FootEval/
test.html?url=tests/ape footsteps.xml
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Fig. 5: Results of the subjective evaluation.

standard conditional WaveGAN, and a hybrid consisting of a condi-
tional WaveGAN generator and a conditional HiFi-GAN discrimina-
tor. The hybrid architecture improves the audio quality of generated
samples and better approximates the training data distribution. Dif-
ferently from what is commonly suggested in the literature, upsam-
pling with zero-stuffing gave us better results than nearest neighbour
interpolation. The same is true for linear or cubic interpolation.

Both objective and subjective evaluation of results were con-
ducted. It is not common for neural synthesis methods to be com-
pared with “traditional” synthesis algorithms in a listening test,
which makes it impossible to establish whether a neural synthesis
method can actually reach state-of-the-art results. In this work, we
compared the two architectures with 6 other methods as well as
recorded samples. The two architectures reached “realism” ratings
as high as real sounds. Although, from informal listening tests, we
would have expected a greater difference in the ratings. In fact,
samples synthesised by WaveGAN are affected by a perceivable
amount of background noise and distortion, while the opposite is
true for HiFi-WaveGAN 11.

This opens questions about the definition of realism of sound ef-
fects, to what extent audio quality correlates with perceived realism,
and what other aspects play a significant role in such judgements.
Following work will focus on increasing the degrees of control and
diversity of synthesised samples, while retaining the audio quality.
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