
Freely available online PAPERS
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Despite the popularity of guitar effects there is very little existing research on classification
and parameter estimation of specific plugins or effect units from guitar recordings. In this
paper, convolutional neural networks were used for classification and parameter estimation
for 13 overdrive, distortion, and fuzz guitar effects. A novel dataset of processed electric
guitar samples was assembled, with four sub-datasets consisting of monophonic or polyphonic
samples and discrete or continuous settings values, for a total of about 250 hours of processed
samples. Results were compared for networks trained and tested on the same or a different sub-
dataset. We found that discrete datasets could lead to equally high performance as continuous
ones while being easier to design, analyze, and modify. Classification accuracy was above
80%, with confusion matrices reflecting similarities in the effects timbre and circuits design.
With parameter values between 0.0 and 1.0, the mean absolute error is in most cases below
0.05, while the root mean square error is below 0.1 in all cases but one.

0 INTRODUCTION

In music composition, production, and engineering, au-
dio effects play an essential role in altering the sound toward
the desired final result. For instruments like the electric gui-
tar, the processing signal chain can often be viewed as part
of the artist’s creative expression [1]. Entire musical genres
and styles are frequently defined and identified by the type
of audio effects adopted [2, 3] and renowned musicians
commonly rely on specific combinations of guitars, ampli-
fiers, and effects to achieve a unique sound [4]. Through
the decades, artists, engineers, and producers have defined
a palette of sounds that have become a reference for guitar
players. In the effort to recreate a specific sound or atmo-
sphere, professionals and amateurs go to great lengths to
identify the exact gear that was used in a certain recording.
When describing a desired result people often rely on nam-
ing a reference style, artist, or song rather than talking in
terms of sound features or effect parameters.

Although the design, reconstruction, and emulation of
audio effects is well-studied [5, 6], it is less so for their
recognition and parameter estimation. Therefore, in our
work, we set out to develop a deep learning model capable
of recognizing which specific guitar pedal effect was used
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in a recording as well as estimating its parameters. Being the
single most important effect for electric guitar, and the one
that usually triggers most discussions, this work focused on
nonlinear effects, i.e., overdrive, distortion, and fuzz.

The rest of this paper is organized as follows: in Sec. 1 we
look at the state of the art and work related to guitar effects
recognition, Sec. 2 introduces the dataset we assembled for
this work while the networks architecture is described in
Sec. 3, Secs. 4 and 5 outline experiments and results, and
Secs. 6 and 7 are devoted to discussion and conclusions.

1 BACKGROUND

The recognition of musical instrument sounds has been
of interest to the information retrieval community for a long
time [7], with applications in musical sounds databases, in-
telligent music search, and recommendation systems. The
estimation of instruments’ parameters, as well as the clas-
sification of playing gestures or styles, has also been ex-
tensively studied—and applied in contexts like automatic
music transcription [8, 9], music education [10], or musi-
cology [11].

Many papers focused on guitar parameters. String, fret,
and plucking position estimation have been extensively
studied, including works on classical and acoustic [12]
and electric [13] guitar. Most works are based on features
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extracted from recorded sounds [9, 12–15] but there are
also examples of estimation based on guitar-string physi-
cal models [16, 17] for high-tempo and real-time applica-
tions. Plucking and pickup position estimation has also been
studied, with Mohamad et al. exploring solutions based on
spectral features (comparing recordings with string mod-
els) and autocorrelation [18]. The study was also extended
to the case of nonlinear audio effects in the signal chain
[19].

Classification of playing styles and techniques has also
received substantial attention. In [20] the authors compare
the performance of several classifiers (support vector ma-
chine (SVM), Gaussian mixture models, nearest neighbors)
on 5 plucking styles (e.g., finger, pick, slap) from bass gui-
tar recordings. In [21], Schuller et al. extend the work to
include expression styles (e.g., bend, slide, vibrato). Su et
al., in [22], apply sparse dictionary learning to classify gui-
tar playing techniques (e.g., vibrato, hammer-on, pull-off).
The same classification problem is solved in [23] using a
deep belief network.

Other examples of work on guitar-related classification
problems focused on playing mode (e.g., bass, solo melodic
improvisation, chordal playing) [24], chords fingering [25],
and guitar model [26–29]. However there is only a small
corpus of research on guitar effects recognition [30–34].

In [30], Stein worked with guitar and bass recordings on
recognition of 11 different effects: feedback and slapback
delay, reverb, chorus, flanger, phaser, tremolo, vibrato, dis-
tortion, and overdrive. In a subsequent work [31] the author
extended his method—based on spectral, cepstral, and har-
monic features and SVMs—to cascaded effects. In [33],
using the same dataset, the authors aimed to understand
which are the most relevant features for the classification
task adopting a “bag-of-audio-words” approach, while in
[32], the authors—making use of specific input test signals
and extracting features from the output—worked on classi-
fication of 10 analogue effect units into 5 categories. In [35]
the guitar amplifier modeling process includes emulation
of nonlinear blocks and estimation of parameters. In these
last examples the approach is limited to the case in which
the unit to classify/model is accessible, which defeats the
purpose of estimation from recordings.

The closest study to our work is [34], and it is the only
one that estimates effects parameters from guitar record-
ings. Similarly to the previous studies, the authors used
SVMs to classify the same 11 effects listed above with
a reduced features set and extended the work by training
shallow neural networks on parameter estimations for 3 ef-
fects (distortion, tremolo, delay). The main limitation of
this study is the necessity of separate features selection and
network training for parameter estimation on each effect.

In all these cases the authors worked on generic audio ef-
fects (e.g., compressor, tremolo, delay) or categories (e.g.,
filter, ambience, modulation, nonlinear) and, to the best of
our knowledge, there is no previous research focusing on
classification and parameter estimation of specific plugins
or effect units (see Table 1) from guitar recordings. In our
work, conditioning the estimation network on the effect
class allows one to infer the settings’ values without the

Table 1. Plugins.

Designer Plugin Emulation of Id

Ibanez TS808 808
Ibanez TS9 TS9
Boss BD2 BD2
Boss OD1 OD1

Audified MultiDrive Boss SD1 SD1
Pedal Pro Boss DS1 DS1

ProCo Rat RAT
MXR Distortion+ DPL
Arbiter Fuzz Face FFC
EH Big Muff BMF

Mercuriall Greed Smasher Mesa/Boogie Grid Slammer MGS

Analog Pig Pie EH Russian Big Muff RBM
Obsession Zupaa Vox Tone Bender VTB

need for different input representation, network architec-
tures, or separate training.

2 DATASET

We assembled a novel dataset of processed electric gui-
tar samples using unprocessed recordings from the IDMT-
SMT-Audio-Effects dataset [30]. The source dataset1 in-
cludes monophonic (624 single notes) and polyphonic (420
intervals and chords) recordings (wav, 44.1 kHz, 16 bit,
mono) from two different electric guitars, each with two
pick-up settings and up to three plucking styles. The mono-
phonic recordings cover the common pitch range of a six-
string electric guitar, and the polyphonic samples were ob-
tained mixing single notes recordings to generate two-note
intervals and three- or four-note chords. All samples are
2 s long. The monophonic recordings required removal of
background noise before the note onset, which we obtained
using a python script together with Librosa’s [36] onset
detection function.

To assemble our dataset we selected 13 overdrive, dis-
tortion, and fuzz plug-ins (see Table 1) designed to emulate
some of the most iconic and widely used analogue guitar ef-
fect pedals. All the plugins have two or three controls and,
regardless of the specific name adopted by the designer,
the controls can be identified by their processing function:
Level, Gain, Tone/Equalization.

For training and testing purposes four sub-datasets were
generated, which will be referred to as Mono Discrete,
Poly Discrete, Mono Continuous, and Poly Continuous.
The first two subsets (Mono Discrete, Poly Discrete) use a
discrete set of combinations selected as the most common
and representative settings a person might use: Gain =
[0.0, 0.1, 0.2, 0.5, 0.8, 1.0], Tone/Eq = [0.0, 0.2, 0.5, 0.8,
1.0]. Also, since the Level control has no effect on the
output timbre, it was set to 1.0 for every combination. A
summary of the controls and settings is shown in Table 2.
Most plugins do not include Gain values below 0.2—this is

1 https://www.idmt.fraunhofer.de/en/business units/m2d/smt/
audio effects.html
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Table 2. Settings.

Id Level Gain Tone/Eq

808 [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
TS9 [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
BD2 [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
OD1 [1.0] [0.2, 0.5, 0.8, 1.0] ···
SD1 [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
DS1 [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
RAT [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
DPL [1.0] [0.2, 0.5, 0.8, 1.0] ···
FFC [1.0] [0.0, 0.2, 0.5, 0.8, 1.0] ···
BMF [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
MGS [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
RBM [1.0] [0.2, 0.5, 0.8, 1.0] [0.0, 0.2, 0.5, 0.8, 1.0]
VTB [1.0] [0.1, 0.2, 0.5, 0.8, 1.0] ···

because for such values there is no audible change between
input and output or even a level attenuation (with no output
for Gain = 0.0). Every monophonic and polyphonic sample
was processed with all the combinations, generating a total
of ∼200,000 processed samples (∼120,000 monophonic,
∼80,000 polyphonic), for a total of about 110 hours.

For the second two subsets (Mono Continuous, Poly Con-
tinuous), both unprocessed samples as well as settings’ val-
ues were drawn from a uniform distribution. We generated
10,000 random samples for each plugin, obtaining a total
of 260,000 samples (130,000 monophonic, 130,000 poly-
phonic), equivalent to about 140 hours. Settings values were
limited to fall between the extremes shown in Table 2.

Generating these four subsets we aimed at gaining a
deeper understanding about the generalization capabilities
of our models. The samples’ were processed in MATLAB—
making use of its VST plugin host features—and both un-
processed inputs and processed outputs were normalized to
−6 dBFS.

3 ARCHITECTURE

Our neural network architecture (Table 3) is based on a
combination of two convolutional and three fully connected
layers, with batch normalization layers at each hidden level.
Except for the output layers’ size and activation functions,
the same configuration was used to train networks on both
effects classification and settings estimation. Four different
networks—and training paradigms—were implemented:

� Effects classification network (FxNet)
� Settings estimation network (SetNet)
� Multitask classification and estimation network

(MultiNet)—where the two convolutional layers are
shared

� Settings estimation conditional network
(SetNetCond)—where an extra embedding layer is
added to condition the estimation on the effect class

The loss functions adopted for the classification and esti-
mation problems were, respectively, the cross-entropy loss
and mean square error (MSE). To evaluate the settings es-

Table 3. Architecture.

Layer Size #Fmaps Activation

Convolution 2D 5x5 6 Linear
Batch Normalization ··· ··· ···
Activation ··· ··· ReLU
Max Pooling 2x2 ··· ···
Convolution 2D 5x5 12 Linear
Batch Normalization ··· ··· ···
Activation ··· ··· ReLU
Max Pooling 2x2 ··· ···
Fully Connected 120 ··· Linear
Batch Normalization ··· ··· ···
Activation ··· ··· ReLU
Fully Connected 60 ··· Linear
Batch Normalization ··· ··· ···
Activation ··· ··· ReLU
Fully Connected * ··· **

Trainable Parameters: FxNet/SetNet ≈ 760 k, SetNetCond ≈ 1.3 M,
MultiNet ≈ 1.5 M
*FxNet = #Plug-ins - SetNet = #Settings
**FxNet = Linear - SetNet = Tanh

timation networks we also defined an accuracy metric for
which a prediction is considered correct when the absolute
error for every parameter is less than 0.1. For effects that
do not have a Tone/Eq control we represented the absence
using a value of −1.0 for the prediction. The threshold of
0.1 was chosen to simplify the comparison of networks
performance in different training settings and on different
datasets. The value is based on the authors’ experience and
informal listening tests during the dataset creation phase.
However, parameters’ sensitivity varies between effects and
controls, and differences in absolute value often do not re-
late linearly with perceptual differences. To overcome these
limitations we do also rely on mean absolute error (MAE)
and root mean square error (RMSE) to evaluate our models.

As input features to all our networks we used mel power-
spectrograms, extracted from audio in 23 ms Hann windows
with 50% overlap. In total 128 mel-bands were used in the
0–22,050 Hz range. For a given 2 s audio input, the feature
extraction produced a T x 128 output (T = 87). These
features are motivated by human auditory perception and
are a common choice in acoustic scene classification [37].
Due to the good performance of our models, we did not
deem it important for this study to test other features, but it
could be worth exploring in the future.

4 EXPERIMENTS

Some preliminary experiments were conducted to obtain
baseline performances for the settings estimation problem
and compare the results when using a multitask approach
or conditional network. The literature shows how multitask
learning can be effective at solving related tasks [38] and
more efficient than training several networks. In the multi-
task paradigm the network was trained to classify a sample
and estimate its settings at the same time. In the conditional
paradigm the networks were trained in “series,” with the
classification network (FxNet) used to condition the set-
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Table 4. FxNet accuracy (%).

Test

Train Mono Disc. Mono Cont. Poly Disc. Poly Cont.

Mono Disc. 86.3 83.1 ··· ···
Mono Cont. 81.3 90.9 ··· ···
Poly Disc. ··· ··· 88.4 89.4
Poly Cont. ··· ··· 84.1 91.4

tings estimation network (SetNetCond). The experiments
were conducted on the Mono Discrete dataset.

All networks were trained for 50 epochs, which resulted
in the following test accuracy:

� SetNet = 40.3%
� MultiNet = 40.88% (87.0% classification accuracy,

44.6% estimation accuracy)
� FxNet + SetNetCond = 57.3% (89.7% classification

accuracy, 60.7% estimation accuracy)

The results show no appreciable difference in effect clas-
sification accuracy between the multitask and conditional
paradigms but do show an impact on the settings estimation
accuracy, with the conditional network performing better.
Further experiments were therefore centered on the analysis
of the classification network (FxNet) and the conditional es-
timation network (SetNetCond) when trained/tested on the
four different sub-datasets. In the following section we il-
lustrate the results of training the networks for 100 epochs
with early stopping when the validation accuracy sees no
improvement for 15 epochs. For weights update we used
the Adam optimizer [39] with a fixed learning rate of 0.001.

5 RESULTS

5.1 Effects Classification
Table 4 shows the accuracy results for the effect classifi-

cation problem. Note that the test accuracy is higher for net-
works trained on continuous datasets, respectively 90.9%
for the Mono Continuous dataset and 91.4% for the Poly
Continuous dataset. At the same time, networks trained on
discrete datasets performed better when tested on contin-
uous ones than the opposite condition (networks trained
on continuous and tested on discrete datasets): 83.1% vs
81.3% for monophonic samples and 89.4% vs 84.1% for
polyphonic ones.

By analyzing the confusion matrices we can gain a bet-
ter understanding about the networks’ performance as well
as the challenges behind the classification. Fig. 1 shows
the details for networks trained on discrete datasets. About
10% of the errors in both datasets are due to misclassifica-
tion between 808 and TS9. The plugins are emulations of
two overdrive effects from the same manufacturer (Ibanez
TS808 and TS9). The two effects are supposed to have
similar gain and frequency response, but upon studying the
circuits schematics we did not notice any difference be-

tween the two. Hence our network would confuse samples
from either effect.

An explanation for the misclassification imbalance be-
tween monophonic and polyphonic samples might be re-
lated to the training procedure. We used batches of 100
samples, randomly selected across the whole dataset and
without control for batch to dataset ratio over the 13 classes.
Assuming identical plugins, the network will tend to clas-
sify samples from either as belonging to the class that was
seen first or more during training. To support this hypothe-
sis we retrained the FxNet network excluding TS9 samples
from the dataset, reaching 96.9% and 98.7% accuracy for
monophonic and polyphonic samples, respectively, with
100% accuracy on 808 samples.

Similar observations are valid for errors in classifying
OD1 and SD1. Again, the plugins are emulations of effect
pedals from the same manufacturer and in their original
analogue version use very similar designs. The two share
the same clipping circuit, although while the SD1 includes
a tone control that combines a treble boosting first order
shelving filter with a first order lowpass, the OD1 has no
tone control and a fixed first order lowpass.

Analyzing the classification errors for the Mono Dis-
crete dataset, we noticed how, of the 345 times the OD1
is classified as SD1: 31% of the times is when the Gain
control is set to 0.2 and another 31% when Gain = 0.5.
Ignoring the specific note being played, this result might
be a consequence of low gain settings, where the spectral
differences might be too small. On the other hand the SD1
is confused for the OD1 88 times and all cases are from
samples where the Tone is set to 0, 0.2, or 0.5. For low
Tone values the spectral differences might be unnoticeable;
most of the high frequency harmonics might be filtered.
In this case we did not observe correlation with the Gain
control values.

Another interesting example more noticeable for the
Mono Discrete dataset is the misclassification of the DPL as
RAT. In this case we are referring to effects from different
manufacturers that do share some circuit design choices.
Although the DPL does not have a tone control, the two
circuits use similar clipping stages and the same maximum
gain. But they differ in the filtering after the clipping section
and in the type of clipping diodes: germanium in the DPL
and silicon in the RAT, with the first type determining a
softer clipping. Looking at the results we noticed how 72%
of the times the DPL is classified as RAT, the Gain control
was set to 1.0. On the other hand 60% of the times the RAT
was classified as DPL, the Gain was set to 0.5 and the Tone
(a first order lowpass) to 0 (no high frequency attenuation).
This might be related to the clipping diodes; a low gain with
silicon diodes might be comparable to the softer clipping of
germanium diodes.

It is also relevant to observe that 808, TS9, MGS, and
SD1, despite being based on the same circuit, with sim-
ilar clipping sections and tone controls, are almost never
confused.

To analyze the performance of our classifiers trained on
continuous datasets and tested on discrete ones, we refer to
Fig. 2. It can be noticed how the errors are similar to the
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Fig. 1. Confusion matrices for discrete datasets.

previous cases, although a major impact on the performance
is due to the misclassification of BD2. In this case we
could not identify correlations between the different circuit
designs and/or the controls values.

5.2 Settings Estimation
In this section we present the results for the settings

estimation problem using the conditional network (SetNet-
Cond) conditioned on the effect class ground truth. Table 5
shows the accuracy results, where all settings are estimated
with an error below 0.1. Networks trained and tested on
polyphonic datasets are the best performing, probably due
to richer information content of the spectra with respect

Table 5. SetNetCond accuracy (%).

Test

Train Mono Disc. Mono Cont. Poly Disc. Poly Cont.

Mono Disc. 80.06 68.56 ··· ···
Mono Cont. 68.51 85.14 ··· ···
Poly Disc. ··· ··· 90.75 75.74
Poly Cont. ··· ··· 88.93 97.01

to monophonic samples. For both monophonic and poly-
phonic samples, the networks trained and tested on contin-

Fig. 2. Confusion matrices for test on discrete datasets.
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Table 6. SetNetCond errors.

Train Set Gain Tone/Eq Test Set
MAE (RMSE) MAE (RMSE)

Mono Disc. 0.030 (0.061) 0.039 (0.070) Mono Disc.
0.064(0.084) 0.044(0.080) Mono Cont.

Mono Cont. 0.062(0.096) 0.067(0.108) Mono Disc.
0.033 (0.045) 0.039 (0.072) Mono Cont.

Poly Disc. 0.017(0.033) 0.024(0.047) Poly Cont.
0.055 (0.070) 0.038 (0.062) Poly Cont.

Poly Cont. 0.036 (0.063) 0.036 (0.062) Poly Disc.
0.020(0.028) 0.019(0.034) Poly Cont.

Avg 0.040 (0.060) 0.038 (0.066)

uous settings reach higher accuracy than their counterparts
trained and tested on discrete settings. This is somewhat
surprising since the estimation of discrete values was ex-
pected to be a simpler problem to solve.

Further insights are offered by Table 6, where we show
mean absolute error (MAE) and root mean square error
(RMSE) for the different training and testing configura-
tions. In the majority of cases (12 out of 16) the MAE is
below 0.05 and for all cases except one the RMSE is below
0.1. We obtained the lowest errors when training and test-
ing on polyphonic samples. The highest errors result from
training on monophonic continuous and discrete samples
and testing respectively on discrete and continuous ones.
The table also includes the average errors for the Gain and
Tone/Eq controls; the two are comparable, which shows
that they present similar difficulty to the estimation. Fig. 3
shows the box-plots for the best and worst cases highlighted
in Table 6.

Moreover we wanted to analyze the generalization capa-
bilities of the networks trained on discrete settings as well
as the performance of networks trained on continuous set-
tings on discrete ones. Fig. 4 shows the scatter plots for the
network trained on the Mono Discrete dataset when tested
on the Mono Continuous dataset. For the Gain estimation
we notice a bias toward the discrete values seen during
training; also, the network manages to interpolate and es-
timate continuous values but seems to do it satisfactorily
only for Gain values above 0.5. The Tone estimation seems
to be less affected, and the output approximates fairly well
the input uniform distribution. An explanation for this dif-
ference might reside in the fact that for the Tone control
we chose a balanced set of discrete values ([0.0, 0.2, 0.5,
0.8, 1.0]). For the Gain control this was not possible. As
explained in Sec. 2, most distortion effects do not produce
any perceivable timbral difference for low gain values and
some introduce attenuation.

The scatter plots for the network trained on the Mono
Continuous and tested on the Mono Discrete datasets (Fig.
5) show some interesting behavior. Tested on a discrete
dataset, the network fails to maintain the performance at
the same levels as on the continuous one. In particular we
notice a higher variance, especially for Gain = [0.2, 0.5] and
most of the Tone values. Also, a skew in the estimations’
distributions is visible.

To analyze these in more details, Figs. 6 and 7 show
the mean error and skew as a function of Gain and Tone
for those networks trained on discrete datasets and tested
on continuous ones and vice-versa. Except for the case of
Gain values below 0.1 in Fig. 7(a) (train on Poly Discrete
and test on Poly Continuous), all mean errors for tests on
opposite datasets are below 0.1. With the same exception,
the mean errors for training on discrete datasets and test on
continuous ones are lower than 0.05 (Figs. 6(a) and 7(a)).
The skew for training on discrete and test on continuous
datasets (Figs. 6(b) and 7(b)) is in many cases lower than
the inverse conditions (Figs. 6(b) and 6(d) and 7(b) and
7(d)).

To conclude, even if the networks perform better on con-
tinuous datasets, there seems to be an argument for con-
sidering discrete values. A dataset that uses discrete values
for the independent variables is easier to design, control,
analyze, and extend or reduce. In our specific application
an estimation error within 0.1 of the target value or some
bias is acceptable. Also, the use of balanced values or a
form of regularization in the cost function could help the
interpolation in case of estimation on continuous values or
unseen data.

5.3 Listening Test
To evaluate our observations about classification and es-

timation challenges, and their correlation with similarities
and differences identified in the original analogue designs,
we ran a listening test aimed at identifying perceptual differ-
ences between plugins. We used an AXY paradigm (also
referred to as duo-trio) where participants were asked to
identify which sample, X or Y, sounded the same as the
reference A. A total of eight participants from our research
group were involved. We did not record any anagraphic
data or ask questions about previous experience but we can
assume participants were not completely new to these kind
of tests.

The test was split in three parts that compared 808 and
TS9, OD1 and SD1, and DPL and RAT. Each part included
15 questions: 10 on the plugins under examination and five
to validate the capability of each participant to identify clear
perceptual differences. All samples were from the Mono
Discrete dataset. The null hypothesis was that there is no
perceptual difference between two samples. We analyzed
each set of test results using a binomial test. Computing a
one-tailed p-value and using a significance threshold of α =
0.05 determined whether the null hypothesis was rejected.

Part 1 compared 808 and TS9. All the references were
808 samples that our model misclassified as TS9. Sam-
ples were randomly selected, obtaining a balance between
note, guitar, pickup position, and settings values. In 9 out
of the 10 cases, participants could not reliably distinguish
between 808 and TS9 (pone−tailed = 0.297). Therefore the
null hypothesis could not be rejected and the two plugins
might indeed be identical or very similar.

Part 2 compared OD1 and SD1. All the references were
OD1 samples misclassified as SD1. Samples were ran-
domly selected among those with Gain set to 0.2 or 0.5,
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Fig. 3. Settings estimation errors (whiskers extend to 1.5 the interquartile range).

Fig. 4. Scatter plots for settings estimation on continuous datasets.

Fig. 5. Scatter plots for settings estimation on discrete datasets.
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(a) (b) (c) (d)

Fig. 6. Mean error and skew for networks trained/tested on monophonic samples.

being the most commonly misclassified ones. Also in this
case, for 9 out of 10 conditions, participants could not
reliably distinguish between OD1 and SD1 (pone−tailed =
0.292).

Part 3 compared DPL and RAT. All the references were
DPL samples misclassified as RAT. DPL samples were
randomly selected among those with Gain set to 1.0 and
compared with RAT samples with Gain set to 0.5 and Fil-
ter set to 0.0, being the specific settings most commonly
misclassified. Here, for only 5 out of 10 conditions, partici-
pants could not reliably distinguish between DPL and RAT
(pone−tailed = 0.13).

In contrast, for all tests when the reference was compared
against a sample where the classifier had 100% accuracy
(e.g., 808 and BMF), all participants correctly identified
the reference (pone−tailed = 0.0039) and the null hypothesis
could be rejected.

These results seem to confirm our observations (see Sec.
5.1), with misclassifications highlighting interesting com-
monalities between plugins and circuit designs. If a two-
tailed test had been adopted the p-value would have doubled
in almost every condition, making the results even stronger.
Complete details about the test are available online (see Sec.
8).

6 DISCUSSION

Generally speaking, especially for digital distortion plu-
gins, the amount of aliasing in the output signal could aid
classification and estimation tasks. In our case plugins de-
signed by Audified and Mercuriall (see Table 1) use 4x
oversampling but we could not find details about Analog

Obsession’s plugins. Also, we do not have details about
the anti-aliasing lowpass filters adopted. Therefore we can-
not exclude that our models might have used aliasing as a
source of information, although one could argue that the
amount of aliasing in the output is still a characteristic of
each plugin. In this sense, both a human listener as well as
an algorithm would interpret this as knowledge available
for the task at hand. In any case, it would be interesting to
devise some specific tests to evaluate the impact.

7 CONCLUSIONS AND FUTURE WORK

In this paper we introduced a CNN-based model for the
classification of guitar effects and estimation of their pa-
rameters. Using electric guitar recordings of single notes,
two-note intervals, and three or four-note chords, we were
able to classify with high accuracy samples processed with
13 overdrive, distortion, and fuzz plugins. The plugins we
used are emulations of some of the most famous and com-
monly used analogue guitar effect pedals. We were also
able to estimate the parameters settings with high precision.
For this work we generated a dataset of processed mono-
phonic and polyphonic samples; the plugins’ settings were
either combinations of discrete values commonly used by
musicians or continuous values randomly extracted from a
uniform distribution. This allowed us to gain further under-
standing about the performance on datasets generated using
discrete or continuous independent variables. We described
the benefits of discrete datasets and postulated about the
possibility of obtaining equally high performances.

To the best of our knowledge our work is the first attempt
at both classification and parameter estimation of specific

Fig. 7. Mean error and skew for networks trained/tested on polyphonic samples.

J. Audio Eng. Soc., Vol. 69, No. 7/8, 2021 July/August 601
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guitar effect units. Differently from previous literature, con-
ditioning on the effect class allows for settings’ inference
without the need for different input representations, net-
work architectures, or separate training.

Being able to extrapolate information about the specific
signal chain used in a recording could benefit music produc-
tion; artists, engineers, and producers often rely on “refer-
ence” sounds from other recordings. This knowledge could
also be applied to automatic music transcription [8], music
education [10], or musicology [11]. Musicians, genres, and
styles are identified by and associated with specific sounds
and effects; this could be applied to intelligent music search
and recommendation systems.

Future work might branch out in different directions:
our model could be compared with human performance;
the architecture and datasets could be extended for higher
accuracy and better generalization on unseen data or study
the problem with limited training data [40]. The research
could be extended to other nonlinear units, different classes
of effects, or tested on other guitars or instruments. Also of
interest would be the case of audio from real guitar pedals
instead of digital emulations.

8 DATA AND CODE AVAILABILITY

Code:
� https://doi.org/10.5281/zenodo.4670359

Models:
� https://doi.org/10.5281/zenodo.4670384

Dataset:
� Mono Disc. - https://doi.org/10.5281/zenodo.4298000
� Mono Cont. - https://doi.org/10.5281/zenodo.4296040
� Poly Disc. - https://doi.org/10.5281/zenodo.4298025
� Poly Cont. - https://doi.org/10.5281/zenodo.4298017

Extended results:
� https://mcomunita.github.io/gfx_classifier_page
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